15.①,③,⑤
[解析]令,排除②②;由,命题①正确;
,命题③正确;,命题⑤正确。
[方法总结]
14.
[解析]该地拥有3套或3套以上住房的家庭可以估计有:户,
所以所占比例的合理估计是.
[方法总结]本题分层抽样问题,首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户,居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计.
(15)若,则下列不等式对一切满足条件的恒成立的是 (写出所有正确命题的编号).
①; ②; ③ ;
④; ⑤
13.12
[解析]程序运行如下:,输出12。
[规律总结]这类问题,通常由开始一步一步运行,根据判断条件,要么几步后就会输出结果,要么就会出现规律,如周期性,等差或等比数列型.
(14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .
12.
[解析]抛物线,所以,所以焦点.
[误区警示]本题考查抛物线的交点.部分学生因不会求,或求出后,误认为焦点,还有没有弄清楚焦点位置,从而得出错误结论.
(13)如图所示,程序框图(算法流程图)的输出值x=
(11)命题“存在,使得”的
否定是
11.对任意,都有.
[解析]特称命题的否定时全称命题,“存在”对应“任意”.
[误区警示]这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.
(12)抛物线的焦点坐标是
10.C
[解析]正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.
[方法技巧]对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.
第Ⅱ卷(非选择题共100分)
9.B
[解析]该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。
.
[方法技巧]把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。
(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是
(A) (A) (A) (A)
8.C
[解析]不等式表示的区域是一个三角形,3个顶点是,目标函数在取最大值6。
[规律总结]线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入目标函数即可求出最大值.
(9)一个几何体的三视图如图,该几何体的表面积是
(A)372 (B)360
(C)292 (D)280
7.A
[解析]在时是增函数,所以,在时是减函数,所以。
[方法总结]根据幂函数与指数函数的单调性直接可以判断出来.
(8)设x,y满足约束条件则目标函数z=x+y的最大值是
(A)3 (B) 4 (C) 6 (D)8
6.D
[解析]当时,、同号,(C)(D)两图中,故,选项(D)符合
[方法技巧]根据二次函数图像开口向上或向下,分或两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.
(7)设,则a,b,c的大小关系是
(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com