22. After many years of hard work, his dream _________ at last.
A. come true B. was come true C. was realized D. realized
第一节:单项填空(共15小题;每小题1分,满分15分)
从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。
21. Despite the fact that there are a lot of complaints about ________ CCTV’s annual Spring Festival Gala(Chunwan),most people think it was really ________ feast for our eyes this year.
A. /; a B. the; the C. the; / D. / ; /
21.解:(1) ,据题意
∴ .
(2) 由 (1) 知,,则
x |
– 1 |
(– 1,0) |
0 |
(0,1) |
1 |
|
– 7 |
- |
0 |
+ |
1 |
|
– 1 |
↘ |
– 4 |
↗ |
– 3 |
∴ 对于的最小值为
∵ 的对称轴为,且抛物线开口向下,
∴的最小值为中较小的
∵
∴ 当的最小值为 – 7
当的最小值为 – 7
∴ 的最小值为 – 11
20.解:(1) 第r + 1项项系数为,第r项系数为,第r + 2项系数为
∴ 展开式中系数最大的项为
18.解:(1)
(2)
当在R上递增,满足题意;
当
∴ , ∴
∴ 综上,a的取值范围是.
19.解法一:
(1) 过O作OF⊥BC于F,连接O1F,
∵OO1⊥面AC,∴BC⊥O1F,
∴∠O1FO是二面角O1-BC-D的平面角,······················· 3分
∵OB = 2,∠OBF = 60°,∴OF =.
在Rt△O1OF中,tan∠O1FO =
∴∠O1FO=60° 即二面角O1-BC-D的大小为60°·············································· 6分
(2) 在△O1AC中,OE是△O1AC的中位线,∴OE∥O1C
∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交线O1F.
过O作OH⊥O1F于H,则OH是点O到面O1BC的距离,································· 10分
∴OH = ∴点E到面O1BC的距离等于····················································· 12分
解法二:
(1) ∵OO1⊥平面AC,
∴OO1⊥OA,OO1⊥OB,又OA⊥OB,······················· 2分
建立如图所示的空间直角坐标系(如图)
∵底面ABCD是边长为4,∠DAB = 60°的菱形,
∴OA = 2,OB = 2,
则A(2,0,0),B(0,2,0),C(-2,0,0),O1(0,0,3)·········· 3分
设平面O1BC的法向量为=(x,y,z),则⊥,⊥,
∴,则z = 2,则x=-,y = 3,
∴=(-,3,2),而平面AC的法向量=(0,0,3)··························· 5分
∴ cos<,>=,
设O1-BC-D的平面角为α, ∴cosα=∴α=60°.
故二面角O1-BC-D为60°.············································································· 6分
(2) 设点E到平面O1BC的距离为d,
∵E是O1A的中点,∴=(-,0,),············································· 9分
则d=
∴点E到面O1BC的距离等于.··································································· 12分
17.解:(1) 法一:设、两项技术指标达标的概率分别为、
由题意得: ······················································ 3分
解得:或,∴.
即,一个零件经过检测为合格品的概率为.·············································· 6分
法二:
(2) 任意抽出5个零件进行检查,其中至多3个零件是合格品的概率为
············································································· 13分
21.(本小题满分12分)
已知函数.
(1) 若函数的图象在点P(1,)处的切线的倾斜角为,求实数a的值;
(2) 设的导函数是,在 (1) 的条件下,若,求的最小值.
(3) 若存在,使,求a的取值范围.
(命题人:周 静 审题人:赵文丽)
∴ a的取值范围为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com