4.摩擦力方向
(1)摩擦力方向和物体间相对运动(或相对运动趋势)的方向相反。
(2)摩擦力的方向和物体的运动方向可能成任意角度。通常情况下摩擦力方向可能和物体运动方向相同(作为动力),可能和物体运动方向相反(作为阻力),可能和物体速度方向垂直(作为匀速圆周运动的向心力)。在特殊情况下,可能成任意角度。
[例8] 小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。
解析:物体受的滑动摩擦力始终和小车的后壁平行,方向竖直向上,而物体相对于地面的速度方向不断改变(竖直分速度大小保持不变,水平分速度逐渐增大),所以摩擦力方向和运动方向间的夹角可能取90°和180°间的任意值。
点评:由上面的分析可知:无明显形变的弹力和静摩擦力都是被动力。就是说:弹力、静摩擦力的大小和方向都无法由公式直接计算得出,而是由物体的受力情况和运动情况共同决定的。
3.静摩擦力大小
(1)必须明确,静摩擦力大小不能用滑动摩擦定律F=μFN计算,只有当 静摩擦力达到最大值时,其最大值一般可认为等于滑动摩擦力,既Fm=μFN
(2)静摩擦力的大小要根据物体的受力情况和运动情况共同确定,其可能的 取值范围是:
0<Ff ≤Fm
[例7] 如图所示,A、B为两个相同木块,A、B间最大静摩擦力Fm=5N,水平面光滑。拉力F至少多大,A、B才会相对滑动?
解析:A、B间刚好发生相对滑动时,A、B间的相对运动状态处于一个临界状态,既可以认为发生了相对滑动,摩擦力是滑动摩擦力,其大小等于最大静摩擦力5N,也可以认为还没有发生相对滑动,因此A、B的加速度仍然相等。分别以A和整体为对象,运用牛顿第二定律,可得拉力大小至少为F=10N
点评:研究物理问题经常会遇到临界状态。物体处于临界状态时,可以认为同时具有两个状态下的所有性质。
2.滑动摩擦力大小
(1)在接触力中,必须先分析弹力,再分析摩擦力。
(2)只有滑动摩擦力才能用公式F=μFN,其中的FN表示正压力,不一定等于重力G。
[例6]如图所示,用跟水平方向成α角的推力F推重量为G的木块沿天花板向右运动,木块和天花板间的动摩擦因数为μ,求木块所受的摩擦力大小。
解析:由竖直方向合力为零可得FN=Fsinα-G,因此有:f =μ(Fsinα-G)
1.摩擦力产生条件
(1)两物体直接接触且相互挤压
(2)接触面粗糙
(3)有相对运动或相对运动的趋势。
以上三个条件缺一不可。
两物体间有弹力是这两物体间有摩擦力的必要条件。(没有弹力不可能有摩擦力)
3.弹力的大小
对有明显形变的弹簧,弹力的大小可以由胡克定律计算。对没有明显形变的物体,如桌面、绳子等物体,弹力大小由物体的受力情况和运动情况共同决定。
(1)胡克定律可表示为(在弹性限度内):F=kx,还可以表示成ΔF=kΔx,即弹簧弹力的改变量和弹簧形变量的改变量成正比。
(2)“硬”弹簧,是指弹簧的k值较大。(同样的力F作用下形变量Δx较小)
(3)几种典型物体模型的弹力特点如下表。
项目 |
轻绳 |
轻杆 |
弹簧 |
|
|||
形变情况 |
伸长忽略不计 |
认为长度不变 |
可伸长可缩短 |
|
|||
施力与受力情况 |
只能受拉力或施出拉力 |
能受拉或受压可施出拉力或压力 |
同杆 |
||||
力的方向 |
始终沿绳 |
不一定沿杆 |
沿弹簧轴向 |
||||
力的变化 |
可发生突变 |
同绳 |
只能发生渐变 |
||||
[例5]如图所示,两物体重力分别为G1、G2,两弹簧劲度系数分别为k1、k2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G2,最后平衡时拉力F=G1+2G2,求该过程系统重力势能的增量。
解析:关键是搞清两个物体高度的增量Δh1和Δh2跟初、末状态两根弹簧的形变量Δx1、Δx2、Δx1/、Δx2/间的关系。
无拉力F时 Δx1=(G1+G2)/k1,Δx2= G2/k2,(Δx1、Δx2为压缩量)
加拉力F时 Δx1/=G2/k1,Δx2/= (G1+G2) /k2,(Δx1/、Δx2/为伸长量)
而Δh1=Δx1+Δx1/,Δh2=(Δx1/+Δx2/)+(Δx1+Δx2)
系统重力势能的增量ΔEp= G1Δh1+G2Δh2
整理后可得:
2.方向
(1)压力、支持力的方向总是垂直于接触面。
(2)绳对物体的拉力总是沿着绳收缩的方向。
(3)杆对物体的弹力不一定沿杆的方向。如果轻直杆只有两个端点受力而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向。
[例1] 如图所示,光滑但质量分布不均匀的小球的球心在O点,重心在P点,静止在竖直墙和桌边之间。试画出小球所受弹力。
解析:由于弹力的方向总是垂直于接触面,在A点,弹力F1应该垂直于球面,所以沿半径方向指向球心O;在B点弹力F2垂直于墙面,因此也沿半径指向球心O。
点评:注意弹力必须指向球心,而不一定指向重心。又由于F1、F2、G为共点力,重力的作用线必须经过O点,因此P和O必在同一竖直线上,P点可能在O的正上方(不稳定平衡),也可能在O的正下方(稳定平衡)。
[例2] 如图所示,重力不可忽略的均匀杆被细绳拉住而静止,试画出杆所受的弹力。
解析:A端所受绳的拉力F1沿绳收缩的方向,因此沿绳向斜上方;B端所受的弹力F2垂直于水平面竖直向上。
点评:由于此直杆的重力不可忽略,其两端受的力可能不沿杆的方向。
杆受的水平方向合力应该为零。由于杆的重力G竖直向下,因此杆的下端一定还受到向右的摩擦力f作用。
[例3] 图中AC为竖直墙面,AB为均匀横梁,其重为G,处于水平位置。BC为支持横梁的轻杆,A、 B、C三处均用铰链连接。试画出横梁B端所受弹力的方向。
解析:轻杆BC只有两端受力,所以B端所受压力沿杆向斜下方,其反作用力轻杆对横梁的弹力F沿轻杆延长线方向斜向上方。
[例4]画出图中物体A所受的力(P为重心,接触面均光滑)
解析:判断弹力的有无,可以采用拆除法:“拆除”与研究对象(受力物体)相接触的物体(如题中的绳或接触面),如果研究对象的运动状态不发生改变,则不受弹力,否则将受到弹力的作用。各图受力如下图所示。
1.产生条件
(1)两个物体直接接触
(2)并发生弹性形变
4.重心:重力的等效作用点。重心的位置与物体的形状及质量的分布有关。重心不一定在物体上。质量分布均匀、形状规则的物体,重心在几何中心上.薄板类物体的重心可用悬挂法确定。
3.大小:G=mg
注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。
2.方向:总是竖直向下
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com