18、如图,正方形所在平面与所在平面交于,
且为的弦,点在上,
,,的直径为9.
(1)求证:为的直径;
(2)试求正方形的边长;
(3)求平面与平面所成锐二面角的余弦值.
17、市二中高一某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) |
频数(人数) |
频率 |
[60,70) |
① |
0.16 |
[70,80) |
22 |
② |
[80,90) |
14 |
0.28 |
[90,100] |
③ |
④ |
合 计 |
50 |
1 |
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖。如果前三道题都答错,就不再答第四题。某同学进入决赛,每道题答对的概率的值恰好与频率分布表中不少于80分的频率的值相同.
① 求该同学恰好答满4道题而获得一等奖的概率;
② 记该同学决赛中答题个数为,求的分布列及数学期望.
16、如图,在四边形中,,,.
(1)求边的长;
(2)求四边形的面积;
(3)求的值.
15、设面积为的平面四边形的第条边的边长记为,是该四边形内任意一点, 点到第条边的距离记为,若,则.类比上述结论,体积为的三棱锥的第个面的面积记为,是该三棱锥内的任意一点,点到第个面的距离记为,则相应的正确命题是: .
14、已知偶函数满足,且当时,.若 、、,则、、的大小关系是 ;
13、已知函数,其中.记函数满足条件的事件为,则事件发生的概率为 ;
12、在直角坐标系中,以原点为极点,轴为极轴建立极坐标系,已知点,是曲线的焦点,则的值是 ;
11、如上右图,是半径为5的的一条割线,,,是的一条切线,为切点,则四边形的面积为 ;
10、如下左图是把二进制数化成十进制数的一个程序框图,则判断框内应填入的条件是 .
(10题图) (11题图)
9、已知复数,若为实数,则实数的值为 ;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com