5.C
[解析]双曲线的,,,所以右焦点为.
[误区警示]本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为或,从而得出错误结论.
5、(2010安徽理数)双曲线方程为,则它的右焦点坐标为
A、 B、 C、 D、
9.(2010湖北文数)若直线与曲线有公共点,则b的取值范围是
A.[,] B.[,3]
C.[-1,] D.[,3]
(2010山东理数)(7)由曲线y=,y=围成的封闭图形面积为
(A) (B) (C) (D)
[答案]A
[解析]由题意得:所求封闭图形的面积为,故选A。
[命题意图]本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。
8.B[命题意图]本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.
[解析1].由余弦定理得
cos∠P=
4
[解析2]由焦点三角形面积公式得:
4
(2010全国卷1理数)(9)已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则P到x轴的距离为
(A) (B) (C) (D)
(2010四川文数)(10)椭圆的右焦点为F,其右准线与轴的交点为.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是
(A)(0,] (B)(0,] (C)[,1) (D)[,1)
解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,
即F点到P点与A点的距离相等
而|FA|=
|PF|∈[a-c,a+c]
于是∈[a-c,a+c]
即ac-c2≤b2≤ac+c2
∴
Þ
又e∈(0,1)
故e∈
答案:D
(2010四川文数)(3)抛物线的焦点到准线的距离是
(A) 1 (B)2 (C)4 (D)8
解析:由y2=2px=8x知p=4
又交点到准线的距离就是p
答案:C
11.(2010福建文数)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为
A.2 B.3 C.6 D.8
[答案]C
[解析]由题意,F(-1,0),设点P,则有,解得,
因为,,所以
==,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最大值,选C。
[命题意图]本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。
(2010全国卷1文数)(8)已知、为双曲线C:的左、右焦点,点P在C上,∠=,则
(A)2 (B)4 (C) 6 (D) 8
7.(2010广东文数)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是
A. B. C. D.
9.(2010陕西文数)已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为 [C]
(A) (B)1 (C)2 (D)4
解析:本题考查抛物线的相关几何性质及直线与圆的位置关系
法一:抛物线y2=2px(p>0)的准线方程为,因为抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,所以
法二:作图可知,抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切与点(-1,0)
所以
(2010辽宁文数)(9)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为
(A) (B) (C) (D)
解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,
则一个焦点为
一条渐近线斜率为:,直线的斜率为:,,
,解得.
(2010辽宁文数)(7)设抛物线的焦点为,准线为,为抛物线上一点,,为垂足,如果直线斜率为,那么
(A) (B) 8 (C) (D) 16
解析:选B.利用抛物线定义,易证为正三角形,则
(2010辽宁理数) (9)设双曲线的-个焦点为F;虚轴的-个端点为B,如果直线FB与该双曲线的一条渐
近线垂直,那么此双曲线的离心率为
(A) (B) (C) (D)
[答案]D
[命题立意]本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。
[解析]设双曲线方程为,则F(c,0),B(0,b)
直线FB:bx+cy-bc=0与渐近线y=垂直,所以,即b2=ac
所以c2-a2=ac,即e2-e-1=0,所以或(舍去)
(2010辽宁理数)(7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=
(A) (B)8 (C) (D) 16
[答案]B
[命题立意]本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。
[解析]抛物线的焦点F(2,0),直线AF的方程为,所以点、,从而|PF|=6+2=8
(2010全国卷2文数)(12)已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若。则k =
(A)1 (B) (C) (D)2
[解析]B:,∵ ,∴ , ∵ ,设,,∴ ,直线AB方程为。代入消去,∴ ,∴ ,
,解得,
(2010浙江文数)(10)设O为坐标原点,,是双曲线(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠P=60°,∣OP∣=,则该双曲线的渐近线方程为
(A)x±y=0 (B)x±y=0
(C)x±=0 (D)±y=0
解析:选D,本题将解析几何与三角知识相结合,主要考察了双曲线的定义、标准方程,几何图形、几何性质、渐近线方程,以及斜三角形的解法,属中档题
(2010重庆理数)(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A. 直线 B. 椭圆 C. 抛物线 D. 双曲线
解析:排除法 轨迹是轴对称图形,排除A、C,轨迹与已知直线不能有交点,排除B
(2010山东文数)(9)已知抛物线,过其焦点且斜率为1的直线交抛物线与、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为
(A) (B)
(C) (D)
答案:B
(2010四川理数)(9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是
(A) (B) (C) (D)
解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,
即F点到P点与A点的距离相等
而|FA|=
|PF|∈[a-c,a+c]
于是∈[a-c,a+c]
即ac-c2≤b2≤ac+c2
∴
Þ
又e∈(0,1)
故e∈
答案:D
(2010天津理数)(5)已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为
(A) (B)
(C) (D)
[答案]B
[解析]本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题。
依题意知,所以双曲线的方程为
[温馨提示]选择、填空中的圆锥曲线问题通常考查圆锥曲线的定义与基本性质,这部分内容也是高考的热点内容之一,在每年的天津卷中三种软件曲线都会在题目中出现。
5.(2010湖南文数) 设抛物线上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是
A. 4 B. 6 C. 8 D. 12
(2010浙江理数)(8)设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
(A) (B) (C) (D)
解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题
(2010全国卷2理数)(12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则
(A)1 (B) (C) (D)2
[答案]B
[命题意图]本试题主要考察椭圆的性质与第二定义.
[解析]设直线l为椭圆的有准线,e为离心率,过A,B分别作AA1,BB1垂直于l,A1,B为垂足,过B作BE垂直于AA1与E,由第二定义得,,由,得,∴
即k=,故选B.
10.(2010四川理综卷)有关①100ml 0.1 mol/L 、②100ml 0.1 mol/L 两种溶液的叙述不正确的是
A.溶液中水电离出的个数:②>① B.溶液中阴离子的物质的量浓度之和:②>①
C.①溶液中: D.②溶液中:
答案: C
解析:本题考查盐类水解知识;盐类水解促进水的电离,且Na2CO3的水解程度更大,碱性更强,故水中电离出的H+个数更多,A项正确;B②钠离子的物质的量浓度为0.2 mol/L而①钠离子的物质的量浓度为0.1 mol/L根据物料守恒及电荷守恒可知溶液中阴离子的物质的量浓度之和:②>①,B项正确;C项水解程度大于电离所以C(H2CO3)>C(CO32-)D项 C032-分步水解第一步水解占主要地位且水解大于电离。判断D正确。C、D两项只要写出它们的水解及电离方程式即可判断。
(2010江苏卷)12.常温下,用 0.1000 mol·LNaOH溶液滴定 20.00mL0.1000 mol·L溶液所得滴定曲线如右图。下列说法正确的是
A.点①所示溶液中:
B.点②所示溶液中:
C.点③所示溶液中:
D.滴定过程中可能出现:
[答案]D
[解析]本题主要考查的是粒子浓度大小的比较。A项,处于点①时,酸过量,根据电荷守恒,则有B项,在点②时,pH=7。仍没有完全反应,酸过量,;C项。当时,两者完全反应,此时由于的水解,溶液呈碱性,但水解程度是微弱的,D项,在滴定过程中,当的量少时,不能完全中和醋酸,则有综上分析可知,本题选D项。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com