6.“a>0”是“>0”的 [A]
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
5.右图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为 [D]
(A)S=S*(n+1)
(B)S=S*xn+1
(C)S=S*n
(D)S=S*xn
4.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为,样本标准差分别为sA和sB,则 [B]
(A) >,sA>sB
(B) <,sA>sB
(C) >,sA<sB
(D) <,sA<sB
3.函数f (x)=2sinxcosx是 [C]
(A)最小正周期为2π的奇函数 (B)最小正周期为2π的偶函数
(C)最小正周期为π的奇函数 (D)最小正周期为π的偶函数
2.复数z=在复平面上对应的点位于 [A]
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
1.集合A={x-1≤x≤2},B={xx<1},则A∩B= [D]
(A){xx<1} (B){x-1≤x≤2}
(C) {x-1≤x≤1} (D) {x-1≤x<1}
(17)(本小题满分10分)
中,为边上的一点,,,,求.
(18)(本小题满分12分)
已知数列的前项和.
(Ⅰ)求;
(Ⅱ)证明:.
(19)(本小题满分12分)
如图,直三棱柱中,,,为的中点,为上的一点,.
(Ⅰ)证明:为异面直线与的公垂线;
(Ⅱ)设异面直线与的夹角为45°,求二面角的大小.
(20)(本小题满分12分)
如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.
(Ⅰ)求p;
(Ⅱ)求电流能在M与N之间通过的概率;
(Ⅲ)表示T1,T2,T3,T4中能通过电流的元件个数,求的期望.
[
(21)(本小题满分12分)
己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为.
(Ⅰ)求C的离心率;
(Ⅱ)设C的右顶点为A,右焦点为F,,证明:过A、B、D三点的圆与x轴相切.
(22)(本小题满分12分)
设函数.
(Ⅰ)证明:当时,;
(Ⅱ)设当时,,求a的取值范围.
(13)已知是第二象限的角,,则 .
(14)若的展开式中的系数是,则 .
(15)已知抛物线的准线为,过且斜率为的直线与相交于点,与的一个交点为.若,则 .
(16)已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,.若,则两圆圆心的距离 .
(1)复数
(A) (B) (C) (D)
(2)函数的反函数是
(A) (B)
(C) (D)
(3)若变量满足约束条件则的最大值为
(A)1 (B)2 (C)3 (D)4
(4)如果等差数列中,,那么
(A)14 (B)21 (C)28 (D)35
(5)不等式的解集为
(A) (B)
(C) (D)
(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有
(A)12种 (B)18种 (C)36种 (D)54种
(7)为了得到函数的图像,只需把函数的图像
(A)向左平移个长度单位 (B)向右平移个长度单位
(C)向左平移个长度单位 (D)向右平移个长度单位
(8)中,点在上,平方.若,,,,则
(A) (B) (C) (D)
(9)已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为
(A)1 (B) (C)2 (D)3
(10)若曲线在点处的切线与两个坐标围成的三角形的面积为18,则[来
(A)64 (B)32 (C)16 (D)8
(11)与正方体的三条棱、、所在直线的距离相等的点
(A)有且只有1个 (B)有且只有2个
(C)有且只有3个 (D)有无数个
(12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则
(A)1 (B) (C) (D)2
第Ⅱ卷
22. (本小题满分14分)
证明以下命题:
(1) 对任一正整a,都存在整数b,c(b>c),使得成等差数列。
(2) 存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com