12.B 考查基础知识,②是张骞,④窦固、窦宪先后大败北匈奴,其政权瓦解。
12.(2010重庆卷)班超投笔从戎,立功西域,为封为定远侯。他在西域的主要活动有
①派甘英出使大秦 ②出使大宛、大月之氏
③任西域都护,管理西域 ④大败被匈奴,使其政权瓦解
A.①② B.①③ C.②④ D.③④
(16)(本小题满分13分,(I)小问7分,(II)小问6分)
设函数。
(I) 求的值域;
(II) 记的内角A、B、C的对边长分别为a,b,c,若=1,b=1,c=,求a的值。
(17)(本小题满分13分,(I)小问5分,(II)小问8分)
在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6),求:
(I)甲、乙两单位的演出序号至少有一个为奇数的概率;
(II)甲、乙两单位之间的演出单位个数的分布列与期望。
(18)(本小题满分13分,(I)小问5分,(II)小问8分)
已知函数其中实数。
(I) 若a=-2,求曲线在点处的切线方程;
(II) 若在x=1处取得极值,试讨论的单调性。
(19)(本小题满分12分,(I)小问5分,(II)小问7分)
如题(19)图,四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。
(I) 求直线AD与平面PBC的距离;
(II) 若AD=,求二面角A-EC-D的平面角的余弦值。
(20)(本小题满分12分,(I)小问5分,(II)小问7分)
已知以原点O为中心,为右焦点的双曲线C的离心率。
(I) 求双曲线C的标准方程及其渐近线方程;
(II) 如题(20)图,已知过点的直线与过点(其中)的直线的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求的面积。
(21)(本小题满分12分,(I)小问5分,(II)小问7分)
在数列中,=1,,其中实数。
(I) 求的通项公式;
(II) 若对一切有,求c的取值范围。
(11)已知复数z=1+I ,则=____________.
解析:
(12)设U=,A=,若,则实数m=_________.
解析:,A={0,3},故m= -3
(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为
,则该队员每次罚球的命中率为____________.
解析:由得
(14)已知以F为焦点的抛物线上的两点A、B满足,则弦AB的中点到准线的距离为___________.
解析:设BF=m,由抛物线的定义知
中,AC=2m,AB=4m,
直线AB方程为
与抛物线方程联立消y得
所以AB中点到准线距离为
(15)已知函数满足:,,则=_____________.
解析:取x=1 y=0得
法一:通过计算,寻得周期为6
法二:取x=n y=1,有f(n)=f(n+1)+f(n-1),同理f(n+1)=f(n+2)+f(n)
联立得f(n+2)= -f(n-1) 所以T=6 故=f(0)=
(1)在等比数列中, ,则公比q的值为
A. 2 B. 3 C. 4 D. 8
解析:
(2) 已知向量a,b满足,则
A. 0 B. C. 4 D. 8
解析:
(3)=
A. -1 B. - C. D. 1
解析:=
(4)设变量x,y满足约束条件,则z=2x+y的最大值为
A.-2 B. 4 C. 6 D. 8
解析:不等式组表示的平面区域如图所示
当直线过点B(3,0)的时候,z取得最大值6
(5) 函数的图象
A. 关于原点对称 B. 关于直线y=x对称 C. 关于x轴对称 D. 关于y轴对称
解析: 是偶函数,图像关于y轴对称
(6)已知函数的部分图象如题(6)图所示,则
A. =1 = B. =1 =- C. =2 = D. =2 = -
解析:
由五点作图法知,= -
(7)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是
A. 3 B. 4 C. D.
解析:考察均值不等式
,整理得
即,又,
(8) 直线y=与圆心为D的圆交与A、B两点,则直线AD与BD的倾斜角之和为
A. B. C. D.
解析:数形结合
由圆的性质可知
故
(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有
A. 504种 B. 960种 C. 1008种 D. 1108种
解析:分两类:甲乙排1、2号或6、7号 共有种方法
甲乙排中间,丙排7号或不排7号,共有种方法
故共有1008种不同的排法
(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A. 直线 B. 椭圆 C. 抛物线 D. 双曲线
解析:排除法 轨迹是轴对称图形,排除A、C,轨迹与已知直线不能有交点,排除B
(16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )
已知是首项为19,公差为-2的等差数列,为的前项和.
(Ⅰ)求通项及;
(Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )
在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:
(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;
(Ⅱ)甲、乙两单位的演出序号不相邻的概率.
(18).(本小题满分13分), (Ⅰ)小问5分,(Ⅱ)小问8分.)
设的内角A、B、C的对边长分别为a、b、c,且3+3-3=4bc .
(Ⅰ) 求sinA的值;
(Ⅱ)求的值.
(19) (本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.)
已知函数(其中常数a,b∈R),是奇函数.
(Ⅰ)求的表达式;
(Ⅱ)讨论的单调性,并求在区间[1,2]上的最大值和最小值.
(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )
如题(20)图,四棱锥中,底面为矩形,底面,,点是棱的中点.
(Ⅰ)证明:平面;
(Ⅱ)若,求二面角的平面角的余弦值.
(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )
已知以原点为中心,为右焦点的双曲线的离心率.
(Ⅰ)求双曲线的标准方程及其渐近线方程;
(Ⅱ)如题(21)图,已知过点的直线:与过点(其中)的直线:的交点在双曲线上,直线与双曲线的两条渐近线分别交于、两点,求的值.
(11)设,则=____________ .
解析:
(12)已知,则函数的最小值为____________ .
解析:,当且仅当时,
(13)已知过抛物线的焦点的直线交该抛物线于、两点,,则____________ .
解析:由抛物线的定义可知
故2
(14)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为____________ .
解析:加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得
加工出来的零件的次品率
(15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线,各段弧所在的圆经过同一点(点不在上)且半径相等. 设第段弧所对的圆心角为,则____________ .
解析:
又,所以
(1)的展开式中的系数为
(A)4 (B)6
(C)10 (D)20
解析:由通项公式得
(2)在等差数列中,,则的值为[
(A)5 (B)6
(C)8 (D)10
解析:由角标性质得,所以=5
(3)若向量,,,则实数的值为
(A) (B)
(C)2 (D)6
解析:,所以=6
(4)函数的值域是
(A) (B)
(C) (D)
解析:
(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为
(A)7 (B)15 (C)25 (D)35
解析:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为
(6)下列函数中,周期为,且在上为减函数的是
(A) (B)
(C) (D)
解析:C、D中函数周期为2,所以错误
当时,,函数为减函数
而函数为增函数,所以选A
(7)设变量满足约束条件则的最大值为
(A)0 (B)2
(C)4 (D)6
解析:不等式组表示的平面区域如图所示,
当直线过点B时,在y轴上截距最小,z最大
由B(2,2)知4
(8)若直线与曲线()有两个不同的公共点,则实数的取值范围为
(A) (B)
(C) (D)
解析:化为普通方程,表示圆,
因为直线与圆有两个不同的交点,所以解得
法2:利用数形结合进行分析得
同理分析,可知
(9)到两互相垂直的异面直线的距离相等的点
(A)只有1个 (B)恰有3个
(C)恰有4个 (D)有无穷多个
解析:放在正方体中研究,显然,线段、EF、FG、GH、
HE的中点到两垂直异面直线AB、CD的距离都相等,
所以排除A、B、C,选D
亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等
(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A)30种 (B)36种
(C)42种 (D)48种
解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法
即=42
法二:分两类
甲、乙同组,则只能排在15日,有=6种排法
甲、乙不同组,有=36种排法,故共有42种方法
22.(本小题满分12分)
函数)
(Ⅰ)已知的展开式中的系数为,求常数
(Ⅱ)已知,是否存在的值,使在定义域中取任意值时,恒成立?如存在,求出的值,如不存在,说明理由.
辽宁省抚顺一中09-10学年度高二下学期5月月考
21. (本小题满分12分)
一个袋子内装有若干个黑球,个白球,个红球(所有的球除颜色外其它均相同),从中任取个球,每取得一个黑球得分,每取一个白球得分,每取一个红球得分,已知得分的概率为,用随机变量X表示取个球的总得分.
(Ⅰ)求袋子内黑球的个数;
(Ⅱ)求X的分布列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com