24.(安徽卷)(20分)如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。一不带电的绝缘小球甲,以速度υ0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/s2。(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1) 甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;
(2)在满足(1)的条件下。求的甲的速度υ0;
(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。
答案:(1)0.4m (2) (3)<<
解析:
(1)在乙恰好能通过轨道的最高点的情况下,设乙到达最高点的速度为,乙离开D点达到水平轨道的时间为t,乙的落点到B点的距离为,则
①
②
③
联立①②③得: ④
(2)设碰撞后甲、乙的速度分别为、,根据动量守恒和机械能守恒定律有:
⑤
⑥
联立⑤⑥得: ⑦
由动能定理得: ⑧
联立①⑦⑧得: ⑨
(3)设甲的质量为M,碰撞后甲、乙的速度分别为、,根据动量守恒和机械能守恒定律有:
(10)
(11)
联立(10)(11)得: (12)
由(12)和,可得:< (13)
设乙球过D点的速度为,由动能定理得
(14)
联立⑨(13)(14)得:< (15)
设乙在水平轨道上的落点到B点的距离为,则有
(16)
联立②(15)(16)得:<<
14.(安徽卷)伽利略曾设计如图所示的一个实验,将摆球拉至M点放开,摆球会达到同一水平高度上的N点。如果在E或F处钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M点。这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小
A.只与斜面的倾角有关
B.只与斜面的长度有关
C.只与下滑的高度有关
D.只与物体的质量有关
答案:C
解析:伽利略的理想西面和摆球实验,斜面上的小球和摆线上的小球好像“记得”起自己的起始高度,实质是动能与势能的转化过程中,总能量不变。物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,高度越高,初始的势能越大转化后的末动能也就越大,速度越大。选项C正确。
25.(四川卷)(20分)
如图所示,空间有场强的竖直向下的匀强电场,长的不可伸长的轻绳一端固定于O点,另一端系一质量的不带电小球,拉起小球至绳水平后,无初速释放。另一电荷量、质量与相同的小球,以速度水平抛出,经时间与小球与点下方一足够大的平板相遇。不计空气阻力,小球均可视为质点,取。
(1)求碰撞前瞬间小球的速度。
(2)若小球经过路到达平板,此时速度恰好为0,求所加的恒力。
(3)若施加恒力后,保持平板垂直于纸面且与水平面的夹角不变,在点下方面任意改变平板位置,小球均能与平板正碰,求出所有满足条件的恒力。
[解析](1)P做抛物线运动,竖直方向的加速度为
在D点的竖直速度为
P碰前的速度为
(2)设在D点轻绳与竖直方向的夹角为,由于P与A迎面正碰,则P与A速度方向相反,所以P的速度与水平方向的夹角为有
,=30°
对A到达D点的过程中根据动能定理
化简并解得
P与A迎面正碰结合为C,根据动量守恒得
解得 m/s
小球C经过s速度变为0,一定做匀减速运动,根据位移推论式
m/s2
设恒力F与竖直方向的夹角为α,如图,根据牛顿第二定律
给以上二式带入数据得
解得 α=30°
(3)平板足够大,如果将平板放置到无限远根据题意也能相碰,此时小球C必须匀速或加速不能减速,所以满足条件的恒力在竖直线与C的速度线之间,设恒力与竖直方向的夹角为β,则 0≤β<120°
在垂直速度的方向上,恒力的分力与重力和电场力的分力等大反向,有
则满足条件的恒力为
(其中0≤β<120°)
23.(四川卷)(16分)质量为M的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t内前进的距离为s。耙地时,拖拉机受到的牵引力恒为F,受到地面的阻力为自重的k倍,耙所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变。求:
(1)拖拉机的加速度大小。
(2)拖拉机对连接杆的拉力大小。
(3)时间t内拖拉机对耙做的功。
[答案]⑴
⑵
⑶
[解析]⑴拖拉机在时间t内匀加速前进s,根据位移公式
①
变形得
②
⑵对拖拉机受到牵引力、支持力、重力、地面阻力和连杆拉力T,根据牛顿第二定律
③
②③连立变形得
④
根据牛顿第三定律连杆对耙的反作用力为
⑤
(3)闭合开关调节滑动变阻器使待测表满偏,流过的电流为Im。根据并联电路电压相等有:
拖拉机对耙做功为
⑥
22.(浙江卷) (16分)在一次国际城市运动会中,要求运动员从高为H的平台上A点由静止出发,沿着动摩擦因数为滑的道向下运动到B点后水平滑出,最后落在水池中。设滑道的水平距离为L,B点的高度h可由运动员自由调节(取;g=10m/s2)。求:
(1)运动员到达B点的速度与高度h的关系;
(2)运动员要达到最大水平运动距离,B点的高度h应调为多大?对应的最大水平距离SBH为多少?
(3若图中H=4m,L=5m,动摩擦因数=0.2,则水平运动距离要达到7m,h值应为多少?
解析:
(1)设斜面长度为L1,斜面倾角为α,根据动能定理得
①
即 ②
③
(2)根据平抛运动公式
X=vot ④
h=gt2 ⑤
由③-⑤式得 ⑥
(3)在⑥式中令x=2m ,H=4m,L=5m, =0.2
则可得到:-h2+3h-1=0
求出
25.(重庆卷)(19分)某兴趣小组用如题25所示的装置进行实验研究。他们在水平桌面上固定一内径为d的圆柱形玻璃杯,杯口上放置一直径为d,质量为m的匀质薄原板,板上放一质量为2m的小物体。板中心、物块均在杯的轴线上,物块与板间动摩擦因数为,不计板与杯口之间的摩擦力,重力加速度为g,不考虑板翻转。
(1)对板施加指向圆心的水平外力,设物块与板间最大静摩擦力为,若物块能在板上滑动,求应满足的条件。
(2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为,
①应满足什么条件才能使物块从板上掉下?
②物块从开始运动到掉下时的位移为多少?
③根据与的关系式说明要使更小,冲量应如何改变。
解析:
(1)设圆板与物块相对静止时,它们之间的静摩擦力为f。共同加速度为a
由牛顿运动定律,有
对物块 f=2ma 对圆板 F-f=ma
两物相对静止,有 f≤
得 F≤fmax
相对滑动的条件F>fmax
(2)设冲击刚结束时圆板获得的速度大小为,物块掉下时,圆板和物块速度大小分别为和。
由动量定理,有
由动能定理,有
对圆板
对物块
由动量守恒定律,有
要使物块落下,必须>
由以上各式得
>
s=
分子有理化得
s=
根据上式结果知:I越大,s越小。
22.(北京卷)(16分)如图,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角=37°,运动员的质量m=50kg.不计空气阻力。(取sin37°=0.60,cos37°=0.80;g取10m/s2)q求
(1)A点与O点时的速度大小;
(2)运动员离开O点时的速度大小;
(3)运动员落到A点时的动能。
解析:(1)运动员在竖直方向做自由落体运动,有
A点与O点的距离
(2)设运动员离开O点的速度为,运动员在水平方向做匀速直线运动,
即
解得
(3)由机械能守恒,取A点位重力势能零点,运动员落到A点的动能为
24.(北京卷)(20分)雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大。现将上述过程简化为沿竖直方向的一系列碰撞。已知雨滴的初始质量为,初速度为,下降距离后于静止的小水珠碰撞且合并,质量变为。此后每经过同样的距离后,雨滴均与静止的小水珠碰撞且合并,质量依次为、……(设各质量为已知量)。不计空气阻力。
(1)若不计重力,求第次碰撞后雨滴的速度;
(2)若考虑重力的影响,
a.求第1次碰撞前、后雨滴的速度和;
b.求第n次碰撞后雨滴的动能。
解析:(1)不计重力,全过程中动量守恒,m0v0=mnv′n
得
(2)若考虑重力的影响,雨滴下降过程中做加速度为g的匀加速运动,碰撞瞬间动量守恒
a. 第1次碰撞前
第1次碰撞后
b. 第2次碰撞前
利用①式化简得 ②
第2次碰撞后,利用2式得
同理,第3次碰撞后
…………
第n次碰撞后
动能
38.(山东卷) [物理-物理3-5] (4分)(2)如图所示,滑块A、C质量均为m,滑块B质量为m。开始时A、B分别以的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远。若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起。为使B能与挡板碰撞两次,应满足什么关系?
解析:将C无初速地放在A上后,,,
A与B碰撞后粘合在一起,使B能与挡板碰撞两次,>0
得: >
24.(山东卷)(15分)如图所示、四分之一圆轨道OA与水平轨道AB相切,它们与另一水平轨道CD在同一竖直面内,圆轨道OA的半径R=0.45m,水平轨道AB长S1=3m,OA与AB均光滑。一滑块从O点由静止释放,当滑块经过A点时,静止在CD上的小车在F=1.6N的水平恒力作用下启动,运动一段时间后撤去F。当小车在CD上运动了S2=3.28m时速度v=2.4m/s,此时滑块恰好落入小车中。已知小车质量M=0.2kg,与CD间的动摩擦因数=0.4。(取g=10m/)求
(1)恒力F的作用时间t.
(2)AB与CD的高度差h。
解析:
(1)
,为撤去力F后到滑块落入小车中的时间。
解得:
(2),,为在AB上运动的时间,
,为平抛运动的时间,
,解得:。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com