2.在等差数列中,
,则
的值为
A. 6 B.8 C.10 D.12
1.设复数,则
A. 1 B.2 C. D.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线,将
上的所有点的横坐标、纵坐标分别伸长为原来的
、2倍后得到曲线
. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(Ⅰ)试写出直线的直角坐标方程和曲线
的参数方程;
(Ⅱ)在曲线上求一点P,使点P到直线
的距离最大,并求出此最大值.
24(本小题满分10分)选修4-5:不等式选讲
(Ⅰ)已知都是正实数,求证:
;
(Ⅱ)已知都是正实数,求证:
.
银川二中2010届高三高考模拟卷(二)
21. (本小题满分12分)已知函数.
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有
,求实数
的取值范围.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.
22(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.
20.(本小题满分12分)一动圆与已知:
相外切,与
:
相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若A(0,1),轨迹C与直线y=kx+m
(k≠0)相交于不同的两点M、N,当|
|=|
|时,求m的取值范围.
19.(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期 |
3月1日 |
3月2日 |
3月3日 |
3月4日 |
3月5日 |
温差![]() |
10 |
11 |
13 |
12 |
8 |
发芽数![]() |
23 |
25 |
30 |
26 |
16 |
(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“m ,n均不小于25”的概率.
(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:回归直线的方程是,其中
,
,)
18.(本小题满分12分)如图,在铁路建设中需要确定隧道的长度和隧道两端的施工方向.已测得隧道两端的两点A、B到某一点C的距离及
ACB=
,求A、B两点间的距离,以及
ABC、
BAC.
17.(本小题满分12分)如图已知平面
、
,且
AB,PC⊥
,PD⊥
,C,D是垂足,试判断直线AB与CD的位置关系?并证明你的结论.
16.平面上有n(n≥2)个圆,其中每两个圆都相交于两点,任何三个圆无公共点.这n个圆将平面分成块区域,可数得
,则
的表达式为
15.现将一个质点随即投入区域中,则质点落在区域
内的概率是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com