25.(本题12分) 在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=.
(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若 =时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG 与△ADM相似?若存在,求出所有符合条件的直线QG的解析式;若不存在,请说明理由.
24.(本题10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.
(1)求证:AD=BD;
(2)E为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;
(3)当BD=2时,AC的长为______.(直接填出结果,不要求写过程)
23.(本题10分)某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件.设每件商品的售价为元(为正整数),每个月的销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当每件商品的售价高于60元时,定价为多少元使得每个月的利润恰为2250元?
22.如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、OH.
(1)求证:△ACE∽△CFB;
(2)若AC=6,BC=4,求OH的长.
21.(本题7分)已知每个网格中小正方形的边长都是1,图中的图案是由三段以格点(每个小正方形的顶点叫格点)为圆心,半径分别为1、2、3的圆弧围成.
(1)填空:图中三段圆弧所围成的封闭图形的面积是 (结果保留);
(2)请你在图中以(1)中的图为基本图案,借助轴对称变换和旋转变换设计一个完整的图案.
20.(本题7分)一布袋中放有红、黄、白、黑四种颜色的球各一个,它们除颜色外其他都一样,小菲从布袋中摸出一球后放回去摇匀,再摸出一个球,请你利用列举法(列表或画树状图)分析并求出小菲两次都能摸到同色球的概率.
19.(本题6分)如图,点E和点C在线段BF上,AB∥DE,AC∥DF,BC=EF,求证:AB=DE.
18.(本题6分)先化简,再求值:,其中
17.(本题6分)解方程:
16.如图,A、M是反比例函数图象上的两点,过点M作直线MB∥x轴,交轴于点B;过点作直线轴交轴于点,交直线MB于点D.BM:DM=8:9,当四边形OADM的面积为时,k= .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com