0  285340  285348  285354  285358  285364  285366  285370  285376  285378  285384  285390  285394  285396  285400  285406  285408  285414  285418  285420  285424  285426  285430  285432  285434  285435  285436  285438  285439  285440  285442  285444  285448  285450  285454  285456  285460  285466  285468  285474  285478  285480  285484  285490  285496  285498  285504  285508  285510  285516  285520  285526  285534  447090 

   试卷包含选择题、填空题和解答题三种题型。其中选择题是四选一型的单项选择题;填空题只要求直接写出结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等。解答应写出文字说明、演算步骤或推理论证过程。三种题型所占分数的百分比约为:选择题占45%,填空题占15%,解答题占40%。

试题按其难度分为容易题,中档题和稍难题。其中难度值为0.8以上的试题为容易题,约占80%;难度值为0.6-0.8之间的试题为中档题,约占10%;难度值为0.4-0.6之间的试题为较难题,约占10%;不出现难度值为0.3以下的试题。试卷的总体难度控制在0.8左右。

试题详情

考试采用闭卷笔试的形式,全卷100分,考试时间90分钟。

试题详情

(三)不等式

1.不等关系与一元二次不等式

了解不等式(组)的实际背景,会从实际问题的情境中抽象出不等式模型;了解一元二次不等式与相应的二次函数、一元二次方程的联系;会解一元二次不等式。

2.二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

3.基本不等式: (a,b≥0)

了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题。

试题详情

(二)数列

1.数列的概念和简单表示法

了解数列的概念和几种简单的表示方法(列表、图象、通项公式);知道数列是自变量为正整数的特殊函数。

2.等差数列、等比数列

理解等差数列、等比数列的概念;掌握等差数列、等比数列的通项公式与前n项和公式;能判断数列的等差或等比关系,并用等差数列、等比数列的有关知识解决相应的问题;了解等差数列与一次函数的关系,等比数列与指数函数的关系。

试题详情

(一)解三角形

1.正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

2.正弦定理和余弦定理的应用 

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

试题详情

(十)三角恒等变换

1.两角和与差的三角函数公式

会用向量的数量积推导出两角差的余弦公式;会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。

2.简单的三角恒等变换

能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆)。

试题详情

(九)平面向量

1.平面向量的实际背景及基本概念

了解向量的实际背景;理解平面向量概念和两个向量相等的含义;理解向量的几何表示。

2.向量的线性运算

掌握向量加、减法的运算,理解其几何意义;掌握向量数乘运算及其几何意义,理解两个向量共线的含义;了解向量的线性运算性质及其几何意义。

3.平面向量的基本定理及坐标表示

了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件。

4.平面向量的数量积

理解平面向量数量积的含义及其物理意义;了解平面向量的数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;会运用数量积表示两个向量的夹角,会判断两个平面向量的垂直关系。

5.向量的应用

会用向量方法解决一些简单的平面几何问题;会用向量方法解决简单的力学问题与其他一些实际问题。

试题详情

(八)基本初等函数Ⅱ(三角函数)

1.任意角、弧度

了解任意角的概念和弧度制的概念;能进行弧度与角度的互化。

2.三角函数

理解任意角三角函数(正弦、余弦、正切)的定义;能用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式及的正弦、余弦的诱导公式;能画出y=sin x, y=cos x, y=tan x的图象,了解三角函数的周期性;理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴交点等),理解正切函数在()上的单调性;理解同角三角函数的基本关系式:sin2x+cos2x=1,=tan x;了解函数的实际意义,了解函数中参数A对函数图象变化的影响;会用三角函数解决一些简单实际问题。

试题详情

(七)概率

1. 事件与概率

了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别;了解两个互斥事件的概率加法公式。

2.古典概型

理解古典概型及概率计算公式;会计算一些随机事件的基本事件数及其发生的概率。

3.随机数与几何概型

了解随机数的意义,了解几何概型的意义,能运用模拟方法估计概率。

试题详情

(六)统计

1. 随机抽样

理解随机抽样;会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。

2. 用样本估计总体

了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,了解他们各自的特点;理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式);能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解样本估计总体的思想;会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。

3. 变量的相关性

会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆)。

试题详情


同步练习册答案