1、等差数列求和公式:,
2.《习案》作业十三.
2.等差数列的前n项和公式2:.
1.等差数列的前n项和公式1: ;
例1、(1)已知等差数列{an}中, a1 =4, S8 =172,求a8和d ;
(2)等差数列-10,-6,-2,2,…前多少项的和是54?
解:(1)
(2)设题中的等差数列为,前n项为 则
由公式可得 . 解之得:(舍去)
∴等差数列-10,-6,-2,2…前9项的和是54.
例2、教材P43面的例1
解:
例3.求集合的元素个数,并求这些元素的和.
解:由得
∴正整数共有14个即中共有14个元素
即:7,14,21,…,98 是等差数列.
∴ 答:略.
例4、等差数列的前项和为,若,求.
(学生练学生板书教师点评及规范)
练习:⑴在等差数列中,已知,求.
⑵在等差数列中,已知,求.
例4.已知等差数列{an}前四项和为21,最后四项的和为67,所有项的和为286,求项数n.
解:依题意,得
两式相加得
又所以
又,所以n=26.
例5.已知一个等差数列{an}前10项和为310,前20项的和为1220,由这些条件能确定这个等差数
列的前n项的和吗?.
思考:(1)等差数列中,成等差数列吗?
(2)等差数列前m项和为,则、.、是等差数列吗?
练习:教材第118页练习第1、3题.
2. 等差数列的前项和公式2: .
用上述公式要求必须具备三个条件:.
但 代入公式1即得:
此公式要求必须已知三个条件:
总之:两个公式都表明要求必须已知中三个.
公式二又可化成式子: ,当d≠0,是一个常数项为零的二次式.
1.等差数列的前项和公式1:
证明: ①
②
①+②:
∵
∴ 由此得:.
(一)、复习引入:
1.等差数列的定义: -=d ,(n≥2,n∈N)
2.等差数列的通项公式:
(1) (2) (3) =pn+q (p、q是常数)
3.几种计算公差d的方法:① - ② ③
4.等差中项:成等差数列
5.等差数列的性质: m+n=p+q (m, n, p, q ∈N )
6.数列的前n项和:数列中,称为数列的前n项和,记为.
“小故事”1、2、3
高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目: 1+2+…100=?”
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:
“1+2+3+…+100=5050.”
教师问:“你是如何算出答案的?”
高斯回答说:“因为1+100=101;
2+99=101;…50+51=101,所以 101×50=5050”
这个故事告诉我们:
(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.
(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法.
教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com