2. 等比数列的通项公式:
, ,
1.等比数列的定义.
2.《习案》作业十五.
2.等比数列的通项公式及变形式.
1.等比数列的定义;
例1.一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.
解:
例2.求下列各等比数列的通项公式:
解:(1)
(2)
例3.教材P50面的例1。
例4.已知数列{an}满足,
(1)求证数列{an+1}是等比数列;(2)求的表达式。
练习:教材第52页第1、2题.
3.等比数列的通项公式2:
2.等比数列的通项公式1:
观察法:由等比数列的定义,有:;
; ;… … … … … … …
.
迭乘法:由等比数列的定义,有:;;;…;
所以,即
1.等比数列的定义:一般地,若一个数列从第二项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫等比数列的公比,用字母q表示(q≠0),即:=q(q≠0).
思考:(1)等比数列中有为0的项吗? (2)公比为1的数列是什么数列?
(3)既是等差数列又是等比数列的数列存在吗?(4)常数列都是等比数列吗?
(1)“从第二项起”与“前一项”之比为常数q; {}成等比数列=q(,q≠0.)
(2) 隐含:任一项
(3) q= 1时,{an}为常数数列. (4).既是等差又是等比数列的数列:非零常数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com