0  286533  286541  286547  286551  286557  286559  286563  286569  286571  286577  286583  286587  286589  286593  286599  286601  286607  286611  286613  286617  286619  286623  286625  286627  286628  286629  286631  286632  286633  286635  286637  286641  286643  286647  286649  286653  286659  286661  286667  286671  286673  286677  286683  286689  286691  286697  286701  286703  286709  286713  286719  286727  447090 

3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.

试题详情

2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

试题详情

1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;

(2)掌握古典概型的概率计算公式:P(A)=

(3)了解随机数的概念;

(4)利用计算机产生随机数,并能直接统计出频数与频率。

试题详情

7、作业:根据情况安排

试题详情

4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为 + =

试题详情

3.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。

试题详情

2.解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)= + =

试题详情

1.解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。(3)中的2个事件既是互斥事件也是对立事件。

试题详情

6、评价标准:

试题详情

4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是 ,从中取出2粒都是白子的概率是 ,现从中任意取出2粒恰好是同一色的概率是多少?

试题详情


同步练习册答案