0  286534  286542  286548  286552  286558  286560  286564  286570  286572  286578  286584  286588  286590  286594  286600  286602  286608  286612  286614  286618  286620  286624  286626  286628  286629  286630  286632  286633  286634  286636  286638  286642  286644  286648  286650  286654  286660  286662  286668  286672  286674  286678  286684  286690  286692  286698  286702  286704  286710  286714  286720  286728  447090 

5.利用计算器生产10个1到20之间的取整数值的随机数。

试题详情

4.抛掷2颗质地均匀的骰子,求点数和为8的概率。

试题详情

3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是    

试题详情

2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是

A.     B.       C.    D.

试题详情

1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是(   )

A.     B.    C.   D.以上都不对

试题详情

5、自我评价与课堂练习:

试题详情

4、课堂小结:本节主要研究了古典概型的概率求法,解题时要注意两点:

(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;

①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

(3)随机数量具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中。

试题详情

3、例题分析:

课本例题略

例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。

分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。

解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)

所以基本事件数n=6,

事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),

其包含的基本事件数m=3

所以,P(A)= = = =0.5

小结:利用古典概型的计算公式时应注意两点:

(1)所有的基本事件必须是互斥的;

(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏。

例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。

解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则

A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]

事件A由4个基本事件组成,因而,P(A)= =

例3 现有一批产品共有10件,其中8件为正品,2件为次品:

(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;

(2)如果从中一次取3件,求3件都是正品的概率.

分析:(1)为返回抽样;(2)为不返回抽样.

解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)= =0.512.

(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336, 所以P(B)= ≈0.467.

解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)= ≈0.467.

小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.

例4 利用计算器产生10个1~100之间的取整数值的随机数。

解:具体操作如下:

键入

PRB
RAND RANDI
STAT DEC
 

ENTER
RANDI(1,100)
STAT DEG
ENTER
RAND (1,100)
       3.
STAT DEC
 

反复操作10次即可得之

小结:利用计算器产生随机数,可以做随机模拟试验,在日常生活中,有着广泛的应用。

例5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?

分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。

解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数。

我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%。因为是投篮三次,所以每三个随机数作为一组。

例如:产生20组随机数:

812,932,569,683,271,989,730,537,925,

907,113,966,191,431,257,393,027,556.

这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为 =25%。

小结:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题。

(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间。

(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数。

例6 你还知道哪些产生随机数的函数?请列举出来。

解:(1)每次按SHIFT  RNA# 键都会产生一个0~1之间的随机数,而且出现0~1内任何一个数的可能性是相同的。

(2)还可以使用计算机软件来产生随机数,如Scilab中产生随机数的方法。Scilab中用rand()函数来产生0~1之间的随机数,每周用一次rand()函数,就产生一个随机数,如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.

试题详情

2、基本概念:

(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;

(2)古典概型的概率计算公式:P(A)= .

试题详情

1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。

(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。

师生共同探讨:根据上述情况,你能发现它们有什么共同特点?

试题详情


同步练习册答案