0  286553  286561  286567  286571  286577  286579  286583  286589  286591  286597  286603  286607  286609  286613  286619  286621  286627  286631  286633  286637  286639  286643  286645  286647  286648  286649  286651  286652  286653  286655  286657  286661  286663  286667  286669  286673  286679  286681  286687  286691  286693  286697  286703  286709  286711  286717  286721  286723  286729  286733  286739  286747  447090 

2.注意与诱导公式,三角函数线的知识的联系

试题详情

1.正弦、余弦曲线  几何画法和五点法 

试题详情

3、讲解范例:

例1 作下列函数的简图

(1)y=1+sinx,x∈[0,2π],   (2) y=|sinx|,  (3)y=sin|x| 

例2 用五点法作函数的简图.

例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:

     

试题详情

2.用五点法作正弦函数和余弦函数的简图(描点法):

正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:

(0,0)  (,1)  (p,0)  (,-1)  (2p,0)

余弦函数y=cosx  xÎ[0,2p]的五个点关键是

(0,1)  (,0)  (p,-1)  (,0)  (2p,1)

只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.

优点是方便,缺点是精确度不高,熟练后尚可以

试题详情

1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.

(1)函数y=sinx的图象

第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值-弧度制下角与实数的对应).

第二步:在单位圆中画出对应于角,…,2π的正弦线正弦线(等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).

第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.

根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.

   把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.

(2)余弦函数y=cosx的图象

用几何法作余弦函数的图象,可以用“反射法”将角x的余弦线“竖立”[把坐标轴向下平移,过作与x轴的正半轴成角的直线,又过余弦线A的终点A作x轴的垂线,它与前面所作的直线交于A′,那么A与AA′长度相等且方向同时为正,我们就把余弦线A“竖立”起来成为AA′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x轴上相应的点x重合,则终点就是余弦函数图象上的点.]

也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O1M按逆时针方向旋转到O1M1位置,则O1M1与O1M长度相等,方向相同.)根据诱导公式,还可以把正弦函数x=sinx的图象向左平移单位即得余弦函数y=cosx的图象. (课件第三页“平移曲线” )

正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.

试题详情

3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有

向线段MP叫做角α的正弦线,有向线段OM叫做角α的余弦线.

试题详情

2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)

P与原点的距离r()

则比值叫做的正弦   记作: 

   比值叫做的余弦   记作: 

试题详情

1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

试题详情

(六) 评价设计

   作业  P30  练习1、3  ,B(1)

试题详情

(五) 课堂小结

   本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。

试题详情


同步练习册答案