本节课我们进一步探讨了三角函数各种变换的实质和函数y = Asin(wx+j)(A>0,w>0)的图像的画法。并通过改变各种变换的顺序而发现:平移变换应在周期变换之前,否则得到的函数图像不是函数y =Asin(wx+j)的图像由y = sinx图像的得到。
2. 函数y=Asin(wx+j)(A>0,w>0)图像和函数y=sinx图像的关系。
利用制作好的课件,运用多媒体教学手段向学生展示由函数y=sinx的图像是怎样经过平移变化→周期变换→振幅变换而得到函数y=Asin (wx+j)图像的。四、指导创新
上面我们学习了函数y = Asin(wx+j)的图像可由y = sinx图像平移变换→周期变换→振幅变换的顺序而得到,若按下列顺序得到y = Asin(wx+j)的图象吗?
⑴周期变换→平移变换→振幅变换
⑵振幅变换→平移变换→周期变换
⑶平移变换→振幅变换→周期变换
教师利用制作好的课件,运用多媒体逐一演示验证,让学生发现规律:若周期变换在前,平移变换在后,则得到的函数图像不是函数y = Asin(wx+j)的图像,振幅变换出现在前或后不会影响得到函数y = Asin(wx+j)的图像。
教师指导学生探讨⑴的变换顺序不能得到函数y = Asin(wx+j) (A>0,w>0)图像的原因,并通过在平移变换过程中的单位变换而调整到函数y = Asin(wx+j)图像的一般公式。
原因:y = sinx y =Asinwx
y = sinw(x+j) = sin(wx+wj)y = Asin(wx+wj)
一般公式:将平移变换单位改为:即可。
1. 函数y = Asin(wx+j)的图像的画法。
为了探讨函数y = Asin(wx+j)的图像和函数y = sinx图像的关系,我们先来用“五点法”作函数y = Asin(wx+j)的图像。
例:作函数y = 3sin(2x+)的简图。
解:⑴设Z= 2x +,那么3xin(2x+)= 3sinZ,x==,分别取z = 0,,p,,2p,则得x为,,,,,所对应的五点为函数y=3sin(x)在一个周期[,]图象上起关键作用的点。
⑵列表
x |
|
|
|
|
|
2x+ |
0 |
|
p |
|
2p |
sin(2x+) |
0 |
1 |
0 |
-1 |
0 |
3 sin(2x+) |
0 |
3 |
0 |
-3 |
0 |
⑶描点作图,运用制好的课件演示作图过程。(图略)
2. 函数y=Asin(wx+j)(A>0,w>0)图像和函数y=sinx图像的关系。
利用制作好的课件,运用多媒体教学手段向学生展示由函数y=sinx的图像是怎样经过平移变化→周期变换→振幅变换而得到函数y=Asin (wx+j)图像的。
归纳1:先把函数y = sinx的图像上的所有点向左平行移动个单位,得到y = sin(x3 +)的图像,再把y = sin(x +)的图像上所有的点的横坐标缩短到原来的倍(纵坐标不变),得到y = sin(2x +)的图像,再把y = sin(2x +)的图像上所有的点的纵坐标伸长到原来的3倍(横坐标不变),从而得到y = 3sin(2x +)图像。
归纳2:函数y = Asin(wx+j),(A>0,w>0)的图像可以看作是先把y = sinx的图像上所有的点向左(j>0)或向右(j>1)平移|j|个单位,再把所得各点的横坐标缩短(w>1)或伸长(0<w<1)到原来的倍(纵坐标不变),再把所得各点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍,(横坐标不变)。即:平移变换→周期变换→振幅变换。三、尝试探究
上面我们学习和复习了三种函数y = sin(x ±k),y = sinwx,y = Asinx的图像和函数y = sinx图像的关系,那么函数y = Asin(wx+j)(a>0,w>0) 的图像和函数y = sinx的图像有何关系呢?三、尝试探究
1. 函数y = Asin(wx+j)的图像的画法。
为了探讨函数y = Asin(wx+j)的图像和函数y = sinx图像的关系,我们先来用“五点法”作函数y = Asin(wx+j)的图像。
例:作函数y = 3sin(2x+)的简图。
解:⑴设Z= 2x +,那么3xin(2x+)= 3sinZ,x==,分别取z = 0,,p,,2p,则得x为,,,,,所对应的五点为函数y=3sin(x)在一个周期[,]图象上起关键作用的点。
⑵列表
x |
|
|
|
|
|
2x+ |
0 |
|
p |
|
2p |
sin(2x+) |
0 |
1 |
0 |
-1 |
0 |
3 sin(2x+) |
0 |
3 |
0 |
-3 |
0 |
⑶描点作图,运用制好的课件演示作图过程。(图略)
4. 函数y = Asinx(A>0)的图像和函数y = sinx图像的关系是什么?
学生答:函数y = Asinx的图像可由函数y = sinx的图像沿y轴伸长(A>1)或缩短(x<1)到原来的A倍而得到的,称为振幅变换。
演示:教师利用多媒体,运用制好的课件将变化过程演示给学生看,并要求学生具体观察图像上点坐标的变化,然后归纳出这种变换的实质是:横坐标不变,纵坐标伸长(A> | )或缩小(0<A<1)到原来的A倍。
3. 函数y = sinwx (w>0)的图像和函数y = sinx图像的关系是什么?
学生答:函数y = sinwx(w>0)的图像可由函数y = sinx的图像沿x轴伸长(w<1)或缩短(w>1)到原来的倍而得到,称为周期变换。
演示:教师运用多媒体演示变化过程,并要求学生观察图像上点坐标的变化,然后进一步总结这种变化的实质是纵坐标不变,横坐标伸长(0<w<1)或缩短(w>1)到原来的倍。
2. 函数y = sin(x±k)(k>0)的图象和函数y = sinx图像的关系是什么?
生答:函数y = sin(x ±k)(k>0)的图像可由函数y = sinx的图像向左(或右)平移k个单位而得到,学生回答后,教师应用多媒体演示变化过程,并要求同学观察图像上点坐标的变化,然后进一步总结出这种变换实际上是纵坐标不变,横坐标增加(或减少)k个单位,这种变换称为平移变换。
1.“五点法”作函数y=sinx简图的步骤,其中“五点”是指什么?
以下函数中,不是奇函数的是( )
A.y=sinx+tanx B.y=xtanx-1 C.y= D.y=lg
3.下列命题中正确的是( )
A.y=cosx在第二象限是减函数 B.y=tanx在定义域内是增函数
C.y=|cos(2x+)|的周期是 D.y=sin|x|是周期为2π的偶函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com