2、在确定分段间隔k时应注意:分段间隔k为整数,当不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k。
[评价设计]
(1)采用随机抽样的方法将总体中的N个个编号。
(2)将整体按编号进行分段,确定分段间隔k(k∈N,L≤k).
(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。
[说明]从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。
[例题精析]
例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
[分析]按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号。
解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1-5的5名学生,第2组是编号为6-10的5名学生,依次下去,59组是编号为291-295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。
例2、从忆编号为1-50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是
A.5,10,15,20,25 B、3,13,23,33,43
C.1,2,3,4,5 D、2,4,6,16,32
[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B。
[课堂练习]P49 练习1. 2. 3
[课堂小结]
1、在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤为:
(1)采用随机的方法将总体中个体编号;
(2)将整体编号进行分段,确定分段间隔k(k∈N);
(3)在第一段内采用简单随机抽样的方法确定起始个体编号L;
(4)按照事先预定的规则抽取样本。
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
[说明]由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[].
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
思考?
(1)你能举几个系统抽样的例子吗?
(2)下列抽样中不是系统抽样的是 ( )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到
大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。
(五)课后作业
1、判断题:
(1)a∥b c⊥a => c⊥b ( )
(1)a⊥c b⊥c => a⊥b ( )
2、填空题:
在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有 ________ 条。
(四)课堂小结
在师生互动中让学生了解:
(1)本节课学习了哪些知识内容?
(2)计算异面直线所成的角应注意什么?
(三)课堂练习
教材P49 练习1、2
充分调动学生动手的积极性,教师适时给予肯定。
(二)讲授新课
1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:
|
平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。
教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:
2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?
组织学生思考:
长方体ABCD-A'B'C'D'中,
BB'∥AA',DD'∥AA',
BB'与DD'平行吗?
生:平行
再联系其他相应实例归纳出公理4
公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
(2)例2(投影片)
例2的讲解让学生掌握了公理4的运用
(3)教材P47探究
让学生在思考和交流中提升了对公理4的运用能力。
3、组织学生思考教材P47的思考题
(投影)
让学生观察、思考:
∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?
生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800
教师画出更具一般性的图形,师生共同归纳出如下定理
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
教师强调:并非所有关于平面图形的结论都可以推广到空间中来。
4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。
(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。
(2)强调:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0, );
③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例3(投影)
例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。
(一)创设情景、导入课题
1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)
2、教学用具:投影仪、投影片、长方体模型、三角板
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com