0  286565  286573  286579  286583  286589  286591  286595  286601  286603  286609  286615  286619  286621  286625  286631  286633  286639  286643  286645  286649  286651  286655  286657  286659  286660  286661  286663  286664  286665  286667  286669  286673  286675  286679  286681  286685  286691  286693  286699  286703  286705  286709  286715  286721  286723  286729  286733  286735  286741  286745  286751  286759  447090 

2、在确定分段间隔k时应注意:分段间隔k为整数,当不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k。

[评价设计]

试题详情

(1)采用随机抽样的方法将总体中的N个个编号。

(2)将整体按编号进行分段,确定分段间隔k(k∈N,L≤k).

(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。

(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。

[说明]从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。

[例题精析]

   例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。

[分析]按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号。

解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1-5的5名学生,第2组是编号为6-10的5名学生,依次下去,59组是编号为291-295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。

例2、从忆编号为1-50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是

A.5,10,15,20,25      B、3,13,23,33,43

C.1,2,3,4,5        D、2,4,6,16,32

[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B。

[课堂练习]P49  练习1. 2. 3

[课堂小结]

1、在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤为:

(1)采用随机的方法将总体中个体编号;

(2)将整体编号进行分段,确定分段间隔k(k∈N);

(3)在第一段内采用简单随机抽样的方法确定起始个体编号L;

(4)按照事先预定的规则抽取样本。

试题详情

一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

[说明]由系统抽样的定义可知系统抽样有以下特证:

(1)当总体容量N较大时,采用系统抽样。

(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[].

(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。

思考?

   (1)你能举几个系统抽样的例子吗?

(2)下列抽样中不是系统抽样的是    (  )

A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到

大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样

B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验

C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止

D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈

点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。

试题详情

(五)课后作业

1、判断题:

(1)a∥b  c⊥a => c⊥b  (   )

(1)a⊥c  b⊥c => a⊥b  (   )

2、填空题:

在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有 ________ 条。

试题详情

(四)课堂小结

在师生互动中让学生了解:

(1)本节课学习了哪些知识内容?

(2)计算异面直线所成的角应注意什么?

试题详情

(三)课堂练习

教材P49 练习1、2

充分调动学生动手的积极性,教师适时给予肯定。

试题详情

(二)讲授新课

1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:

共面直线
 
       相交直线:同一平面内,有且只有一个公共点;

平行直线:同一平面内,没有公共点;

异面直线:  不同在任何一个平面内,没有公共点。

教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:

2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?

组织学生思考:

长方体ABCD-A'B'C'D'中,

BB'∥AA',DD'∥AA',

BB'与DD'平行吗?

生:平行

再联系其他相应实例归纳出公理4

公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线

a∥b

c∥b

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

(2)例2(投影片)

例2的讲解让学生掌握了公理4的运用

(3)教材P47探究

让学生在思考和交流中提升了对公理4的运用能力。

3、组织学生思考教材P47的思考题

 

(投影)

让学生观察、思考:

∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?

生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800

教师画出更具一般性的图形,师生共同归纳出如下定理

等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

教师强调:并非所有关于平面图形的结论都可以推广到空间中来。

4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。

(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。

(2)强调:

① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

② 两条异面直线所成的角θ∈(0,  );

③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

(3)例3(投影)

例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。

试题详情

(一)创设情景、导入课题

1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。

2、师:那么,空间两条直线有多少种位置关系?(板书课题)

试题详情

2、教学用具:投影仪、投影片、长方体模型、三角板

试题详情


同步练习册答案