16.(2009四川卷理)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B 原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利1),故看作直线绕点(0,1)旋转,当a=-5时,则可行域不是一个封闭区域,当a=1时,面积是1;a=2时,面积是;当a=3时,面积恰好为2,故选D.
15.(2009天津卷理)设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为
A.6 B.7 C.8 D.23
解析 画出不等式表示的可行域,如右图,
让目标函数表示直线在可行域上平移,知在点B自目标函数取到最小值,解方程组得,所以,故选择B。
14.(2009湖南卷理)已知D是由不等式组,所确定的平面区域,则圆 在区域D内的弧长为 [ B]
A . B. C. D.
答案 B
解析 解析如图示,图中阴影部分所在圆心角所对弧长即为所求,易知图中两直线的斜率分别是,所以圆心角即为两直线的所成夹角,所以,所以,而圆的半径是2,所以弧长是,故选B现。
13.(2009宁夏海南卷文)设满足则
A.有最小值2,最大值3 B.有最小值2,无最大值
C.有最大值3,无最小值 D.既无最小值,也无最大值
答案 B
解析 画出不等式表示的平面区域,如右图,由z=x+y,得y=-x+z,令z=0,画出y=-x的图象,当它的平行线经过A(2,0)时,z取得最小值,最小值为:z=2,无最大值,故选.B
10.(2009安徽卷文)不等式组 所表示的平面区域的面积等于
A. B. C. D.
解析 由可得,故阴 =,选C。
答案 C
C.有最大值3,无最小值 D.既无最小值,也无最大值
答案 B
解析 画出可行域可知,当过点(2,0)时,,但无最大值。选B.
9.(2009安徽卷理)若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是
A. B. C. D.
答案 B
解析 不等式表示的平面区域如图所示阴影部分△ABC
由得A(1,1),又B(0,4),C(0,)
∴△ABC=,设与的
交点为D,则由知,∴
∴选A。
8. (2009山东卷理)设x,y满足约束条件 ,
若目标函数z=ax+by(a>0,b>0)的是最大值为12,
则的最小值为 ( ).
A. B. C. D. 4
答案 A
解析 不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6, 而=,故选A.
[命题立意]:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求的最小值常用乘积进而用基本不等式解答.
7.(陕西理,4)过原点且倾斜角为的直线被圆学所截得的弦长为科网
A. B.2 C. D.2
[答案]D
6. (上海文,18)过圆的圆心,作直线分
别交x、y正半轴于点A、B,被圆分成四部分(如图),
若这四部分图形面积满足则直线AB有( )
(A) 0条 (B) 1条 (C) 2条 (D) 3条
[解析]由已知,得:,第II,IV部分的面
积是定值,所以,为定值,即为定值,当直线
AB绕着圆心C移动时,只可能有一个位置符合题意,即直线
AB只有一条,故选B。
[答案]B
5. (上海文,15)已知直线平行,则k得值是( )
A. 1或3 B.1或5 C.3或5 D.1或2
[解析]当k=3时,两直线平行,当k≠3时,由两直线平行,斜率相等,得:=k-3,解得:k=5,故选C。
[答案]C
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com