1.(2009年广东卷文)已知平面向量a= ,b=, 则向量
A平行于轴 B.平行于第一、三象限的角平分线
C.平行于轴 D.平行于第二、四象限的角平分线
[答案]
[解析],由及向量的性质可知,C正确.
[名师点睛]向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.
[试题演练]
如图在RtABC中,已知BC=a,若长为2a的线段PQ以A为中点,问与的夹角取何值时, 的值最大?并求出这个最大值。
解:以直角顶点A为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系。设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b).且|PQ|=2a,|BC|=a.设点P的坐标为(x,y),则Q(-x,-y),
∴cx-by=a2cos.∴=- a2+ a2cos.故当cos=1,即=0(方向相同)时,的值最大,其最大值为0.
点评:本题主要考查向量的概念,运算法则及函数的有关知识,平面向量与几何问题的融合。考查学生运用向量知识解决综合问题的能力。
[三年高考] 07、08、09 高考试题及其解析
2009高考试题及解析
[名师点睛]平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
[试题演练]已知向量=(cosx,sinx),=(),且x∈[0,].
(1)求(2)设函数+,求函数的最值及相应的的值。
解:(错误!未找到引用源。)由已知条件: , 得:
(2)
因为:,所以:
所以,只有当: 时, ,或时,
点评:本题考查向量、三角函数、二次函数的知识,经过配方后,变成开口向下的二次函数图象,要注意sinx的取值范围,否则容易搞错。
3、将的图象按向量平移,则平移后所得图象的解析式为( )
A. B.
C. D.
解: 由向量平移的定义,在平移前、后的图像上任意取一对对应点,,则,代入到已知解析式中可得选A
点评:本题主要考察向量与三角函数图像的平移的基本知识,以平移公式切入,为中档题。注意不要将向量与对应点的顺序搞反,或死记硬背以为是先向右平移个单位,再向下平移2个单位,误选C
2、在中,角的对边分别为.
(1)求;
(2)若,且,求.
解:(1)
又 解得.
,是锐角. .
(2)由, , .
又 . .
. .
点评:本题向量与解三角形的内容相结合,考查向量的数量积,余弦定理等内容。
[名师点睛]向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
[试题演练]
1、已知向量 ,函数
(1)求的最小正周期; (2)当时, 若求的值.
解:(1) .
所以,T=.
(2) 由得,
∵,∴ ∴ ∴
4、在中,,若点满足,则=( ).
A. B. C. D.
[解法一]∵ ∴
∴.
[试题演练]
设D、E、F分别是△ABC的三边BC、CA、AB上的点,且则与( )
A.反向平行 B.同向平行 C.互相垂直 D.既不平行也不垂直
解:由定比分点的向量式得:同理,有:以上三式相加得所以选A.
点评:利用定比分点的向量式,及向量的运算,是解决本题的要点.
3、已知平面向量=(1,-3),=(4,-2),与垂直,则是( )
A. -1 B. 1 C. -2 D. 2
解:由于
∴,即,选A
点评:本题考查简单的向量运算及向量垂直的坐标运算,注意不要出现运算出错,因为这是一道基础题,要争取满分。
2、已知平面向量,且∥,则=( )
A.(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10)
解:由∥,得m=-4,所以,
=(2,4)+(-6,-12)=(-4,-8),故选(C)。
点评:两个向量平行,其实是一个向量是另一个向量的倍,也是共线向量,注意运算的公式,容易与向量垂直的坐标运算混淆。
[名师点睛]向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的
[试题演练]
1、设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=( )
A.(-15,12) B.0 C.-3 D.-11
解:(a+2b),(a+2b)·c ,选C
点评:本题考查向量与实数的积,注意积的结果还是一个向量,向量的加法运算,结果也是一个向量,还考查了向量的数量积,结果是一个数字。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com