有些题看似不同,但确有相同的求解方法,实质是一样的,将这些题放在一起比较有利于提高同学们分析问题、解决问题的能力,能达到举一反三的目的。
例9、如图15所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F缓慢拉动细绳时,小球所受支持力为N,则N,F的变化情况是:
A、都变大;
B、N不变,F变小;
C、都变小;
D、N变小, F不变。
例10、如图16所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前
A、绳子越来越容易断,
B、绳子越来越不容易断,
C、AB杆越来越容易断,
D、AB杆越来越不容易断。
例11、如图17所示竖直绝缘墙壁上的Q处有一固定 的质点A,Q正上方的P点用丝线悬挂另一质点B, A、B两质点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A、B两质点的带电量逐渐减小。在电荷漏完之前悬线对悬点P的拉力大小:
A、保持不变;
B、先变大后变小;
C、逐渐减小;
D、逐渐增大。
分析与解:例9、例10、例11三题通过受力分析发现,物理实质是相同的,即都是三力平衡问题,都要应用相似三角形知识求解。
在例中对小球进行受力分析如图18所示,显然ΔAOP与ΔPBQ相似。 由相似三角形性质有:(设OA=H,OP=R,AB=L)
因为mg、H、R都是定值,所以当L减小时,N不变,F减小。B正确。同理可知例10、例11的答案分别为B和A
2.已知两个不平行分力的大小。如图10所示,分别以F的始端、末端为圆心,以F1、F2为半径作圆,两圆有两个交点,所以F分解为F1、F2有两种情况。存在极值的几种情况。
(1)已知合力F和一个分力F1的方向,另一个分力F2存在最小值。
(2)已知合力F的方向和一个分力F1,另一个分力F2存在最小值。
例7、如图11所示,物体静止于光滑的水平面上,力F作用于物体O点,现要使合力沿着OO,方向,那
么,必须同时再加一个力F,。这个力的最小值是:
A、Fcos, B、Fsinθ,
C、Ftanθ, D、Fcotθ
分析与解:由图11可知,F,的最小值是Fsinθ,即B正确。
1.已知一个分力F1的方向和另一个分力F2的大小,由图9可知:
当F2=Fsin时,分解是唯一的。
当Fsin<F2<F时,分解不唯一,有两解。当F2>F时,分解是唯一的。
将一个已知力F进行分解,其解是不唯一的。要得到唯一的解,必须另外考虑唯一性条件。常见的唯一性条件有:
1.已知两个不平行分力的方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。
2已知一个分力的大小和方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。
力的分解有两解的条件:
有n个力F1、F2、F3、……Fn,它们合力的最大值是它们的方向相同时的合力,即Fmax=.而它们的最小值要分下列两种情况讨论:
(1)、若n个力F1、F2、F3、……Fn中的最大力Fm大于,则它们合力的最小值是(Fm-)。
(2)若n个力F1、F2、F3、……Fn中的最大力Fm小于,则它们合力的最小值是0。
例5、四个共点力的大小分别为2N、3N、4N、6N,它们的合力最大值为 ,它们的合力最小值为 。
分析与解:它们的合力最大值Fmax=(2+3+4+6)N=15N.因为Fm=6N<(2+3+4)N,所以它们的合力最小值为0。
例6、四个共点力的大小分别为2N、3N、4N、12N,它们的合力最大值为 ,它们的合力最小值为 。
分析与解:它们的合力最大值Fmax=(2+3+4+12)N=21N,因为Fm=12N>(2+3+4)N,所以它们的合力最小值为(12-2-3-4)N=3N。
直接接触的物体间由于发生弹性形变而产生的力叫弹力。弹力产生的条件是“接触且有弹性形变”。若物体间虽然有接触但无拉伸或挤压,则无弹力产生。在许多情况下由于物体的形变很小,难于观察到,因而判断弹力的产生要用“反证法 ”,即由已知运动状态及有关条件,利用平衡条件或牛顿运动定律进行逆向分析推理。
例如,要判断图5中静止在光滑水平面上的球是否受到斜面对它的弹力作用,可先假设有弹力N2存在,则此球在水平方向所受合力不为零,必加速运动,与所给静止状态矛盾,说明此球与斜面间虽接触,但并不挤压,故不存在弹力N2。
例4、如图6所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是:
A.小车静止时,F=mgsinθ,方向沿杆向上。
B.小车静止时,F=mgcosθ,方向垂直杆向上。
C.小车向右以加速度a运动时,一定有F=ma/sinθ.
D.小车向左以加速度a运动时,,方向斜向左上方,与竖直方向的夹角为α=arctan(a/g).
分析与解:小车静止时,由物体的平衡条件知杆对球的作用力方向竖直向上,且大小等于球的重力mg.
小车向右以加速度a运动,设小球受杆的作用力方向与竖直方向的夹角为α,如图7所示。根据牛顿第二定律有:Fsinα=ma, Fcosα=mg.,两式相除得:tanα=a/g.
只有当球的加速度a=g.tanθ时,杆对球的作用力才沿杆的方向,此时才有F=ma/sinθ.小车向左以加速度a运动,根据牛顿第二定律知小球所受重力mg和杆对球的作用力F的合力大小为ma,方向水平向左。根据力的合成知三力构成图8所示的矢量三角形,,方向斜向左上方,与竖直方向的夹角为:α=arctan(a/g).
滑动摩擦力的方向总是与物体“相对运动”的方向相反。所谓相对运动方向,即是把与研究对象接触的物体作为参照物,研究对象相对该参照物运动的方向。当研究对象参与几种运动时,相对运动方向应是相对接触物体的合运动方向。静摩擦力的方向总是与物体“相对运动趋势”的方向相反。所谓相对运动趋势的方向,即是把与研究对象接触的物体作为参照物,假若没有摩擦力研究对象相对该参照物可能出现运动的方向。
例3、如图3所示,质量为m的物体放在水平放置的钢板C上,与钢板的动摩擦因素为μ。由于受到相对于地面静止的光滑导槽A、B的控制,物体只能沿水平导槽运动。现使钢板以速度V1向右匀速运动,同时用力F拉动物体(方向沿导槽方向)使物体以速度V2沿导槽匀速运动,求拉力F大小。
分析与解:物体相对钢板具有向左的速度分量V1和侧向的速度分量V2,故相对钢板的合速度V的方向如图4所示,滑动摩擦力的方向与V的方向相反。根据平衡条件可得:
F=fcosθ=μmg
从上式可以看出:钢板的速度V1越大,拉力F越小。
问题一:弄清滑动摩擦力与静摩擦力大小计算方法的不同。
当物体间存在滑动摩擦力时,其大小即可由公式Fμ=μFN计算,由此可看出它只与接触面间的动摩擦因数及正压力有关,而与相对运动速度大小、接触面积的大小无关。
正压力是静摩擦力产生的条件之一,但静摩擦力的大小与正压力无关(最大静摩擦力除外)。当物体处于平衡状态时,静摩擦力的大小由平衡条件或牛顿定律求解;而物体处于非平衡态的某些静摩擦力的大小应由牛顿第二定律求解。
例1、如图1所示,质量为m,横截面为直角三角形的物块ABC,,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为_________。
分析与解:物块ABC受到重力、墙的支持力、摩擦力及推力四个力作用而平衡,由平衡条件不难得出静摩擦力大小为
。
例2、如图2所示,质量分别为m和M的两物体P和Q叠放在倾角为θ的斜面上,P、Q之间的动摩擦因数为μ1,Q与斜面间的动摩擦因数为μ2。当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为:
A.0; B. μ1mgcosθ;
C.μ2mgcosθ; D. (μ1+μ2)mgcosθ;
分析与解:当物体P和Q一起沿斜面加速下滑时,其加速度为:a=gsinθ-μ2gcosθ.
因为P和Q相对静止,所以P和Q之间的摩擦力为静摩擦力,不能用公式求解。对物体P运用牛顿第二定律得: mgsinθ-f=ma
所以求得:f=μ2mgcosθ.即C选项正确。
4.一题多解能训练大家的发散思维,对能力有较高的要求.
这些方法在其它内容上也有用,希望大家用心体会.
[例题2]甲、乙、丙三辆汽车以相同的速度同时经过某一路标,从此时开始甲车一直做匀速直线运动,乙车先加速后减速,丙车先减速后加速,它们经过下个路标时速度又相同.则:[ ]
A.甲车先通过下一个路标
B.乙车先通过下一个路标
C.丙车先通过下一个路标
D.条件不足,无法判断
点拨:直接分析难以得出答案,能否借助图像来分析?
(学生讨论发言,有些学生可能会想到用图像.)
解答:作出三辆汽车的速度-时间图像:
甲、乙、丙三辆汽车的路程相同,即速度图线与t轴所围的面积相等,则由图像分析直接得出答案B.
[例题3]一跳水运动员从离水面10m高的平台上向上跃起,举双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计),从离开跳台到手触水面,他可用于完成空中动作的时间是______s.(计算时,可以把运动员看作全部质量集中在重心的一个质点.g取10m/s2,结果保留二位数字.)分析:首先,要将跳水这一实际问题转化为理想化的物理模型,将运动员看成一个质点,则运动员的跳水过程就抽象为质点的竖直上抛运动.
学生解答:
解法一:分段求解.
上升阶段:初速度为v0,a=-g的匀减速直线运动
由题意知质点上升的最大高度为:
h=0.45m
可求出质点上抛的初速度
上升时间:
下落阶段:为自由落体运动,即初速度为0,a=g的匀加速直线运动.
下落时间:
完成空中动作的时间是:
t1+t2=0.3+1.45=1.75s
解法二:整段求解.
先求出上抛的初速度:
v0=3m/s(方法同上)
将竖直上抛运动的全过程看作统一的匀减速直线运动,设向上的初速度方向为正,加速度a=-g,从离开跳台到跃入水中,质点位移为-10m.
由位移公式: 代入数据:
求出:t=1.75s(舍去负值)
通过计算,我们体会到跳水运动真可谓是瞬间的体育艺术,在短短的1.75s内要完成多个转体和翻滚等高难度动作,充分展示优美舒展的姿势确实非常不易.
[例题4]在平直公路上有甲、乙两辆车在同一地点向同一方向运动,甲车以10m/s的速度做匀速直线运动,乙车从静止开始以1.0m/s的加速度作匀加速直线运动,问:
(1)甲、乙两车出发后何时再次相遇?
(2)在再次相遇前两车何时相距最远?最远距离是多少?
要求用多种方法求解.
学生分析与解答:
解法一:函数求解.
出发后甲、乙的位移分别为
s甲=vt=10t ①
两车相遇:s甲=s乙 ③
解出相遇时间为:t=20s
两车相距:△s=s甲-s乙=10t-0.5t2
求函数极值:当t=10s时,△s有最大值,△smax=50m
微机模拟物理过程(几何画板):
观察:△s的变化
现象:当v乙<v甲时,△s增大
当v乙>v甲时,△s减小
当v乙=v甲时,△s最大
根据学生分析情况适当提示.
解法二:实验方法求△smax.
当v乙=v甲时,△s最大,
有:at=10,t=10/1=10(s)
△smax=s甲-s乙=10t-0.5t2=50(m)
解法三:图像法.
分别作出甲、乙的速度-时间图像
当甲、乙两车相遇时,有s甲=s乙,
由图像可看出:当甲图线与时间轴所围面积=乙图线与时间轴所围面积时,有:
t=20s,即两车相遇的时间.
当v乙=v甲时,△s最大.
由图像可看出:△smax即为阴影部分的三角形面积,
[例题5]球A从高H处自由下落,与此同时,在球A下方的地面上,B球以初速度v0竖直上抛,不计阻力,设v0=40m/s,g=10m/s2.试问:
(1)若要在B球上升时两球相遇,或要在B球下落时两球相遇,则H的取值范围各是多少?
(2)若要两球在空中相遇,则H的取值范围又是多少?
示意图:图1-2-9.
分析:若H很小,可能在B球上升时相遇;若H较大,可能在B球下落时相遇,但若H很大,就可能出现B球已落回原地,而A球仍在空中,即两球没有相遇.所以,要使两球在空中相遇.H要在一定的范围内.
微机模拟(几何画板):
v0=40m/s
设定H取不同的值,观察两球在什么位置相遇、或不相遇:
H=100m时,在B球上升时相遇
H=200m时,在B球下落时相遇
H=400m时,不相遇
再改变几次H的值进行观察.
微机模拟:
H不变,改变v0
当v0取不同的值,观察两球在什么位置相遇或不相遇.
请同学们课后解答.
学生解答:
(1)算出B球上升到最高点的时间:
t1=v0/g=40/10=4(s)
则B球在最高点处两球相遇时:
B球在落地前瞬间两球相遇时:
所以:
要在B球上升时两球相遇,则0<H<160m
要在B球下落时两球相遇,则160m<H<320m.
(2)由上可知,若要两球在空中相遇,则0<H<320m.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com