51.(2009福建卷文)定义在R上的偶函数的部分图像如右图所示,则在上,下列函数中与的单调性不同的是
A. B.
C. D.
解析 解析 根据偶函数在关于原点对称的区间上单调性相反,故可知求在上单调递减,注意到要与的单调性不同,故所求的函数在上应单调递增。而函数在上递减;函数在时单调递减;函数在(上单调递减,理由如下y’=3x2>0(x<0),故函数单调递增,显然符合题意;而函数,有y’=-<0(x<0),故其在(上单调递减,不符合题意,综上选C。
50.(2009福建卷文)下列函数中,与函数 有相同定义域的是
A . B. C. D.
解析 解析 由可得定义域是的定义域;的定义域是≠0;的定义域是定义域是。故选A.
49.(2009四川卷理)已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是
A.0 B. C.1 D.
[考点定位]本小题考查求抽象函数的函数值之赋值法,综合题。(同文12)
解析:令,则;令,则
由得,所以
,故选择A。
48.(2009四川卷理)已知函数连续,则常数的值是
A.2 B.3 C.4 D.5
[考点定位]本小题考查函数的连续性,考查分段函数,基础题。
解析:由题得,故选择B。
解析2:本题考查分段函数的连续性.由,,由函数的连续性在一点处的连续性的定义知,可得.故选B.
47.(2009天津卷理)已知函数若则实数的取值范围是
A B C D
[考点定位]本小题考查分段函数的单调性问题的运用。以及一元二次不等式的求解。
解析:由题知在上是增函数,由题得,解得,故选择C。
46.(2009湖南卷理)设函数在(,+)内有定义。对于给定的正数K,定义函数
取函数=。若对任意的,恒有=,则
A.K的最大值为2 B. K的最小值为2 C最大值为1 D. K的最小值为1
[答案]:D
[解析]由知,所以时,,当时,,所以即的值域是,而要使在上恒成立,结合条件分别取不同的值,可得D符合,此时。故选D项。
45.(2009湖南卷理)如图1,当参数时,连续函数 的图像分别对应曲线和 , 则 [ B]
A B
C D
[答案]:B
[解析]解析由条件中的函数是分式无理型函数,先由函数在是连续的,可知参数,即排除C,D项,又取,知对应函数值,由图可知所以,即选B项。
44.(2009湖南卷理)若a<0,>1,则 (D)
A.a>1,b>0 B.a>1,b<0 C. 0<a<1, b>0 D. 0<a<1, b<0
[答案]:D
[解析]由得由得,所以选D项。
43.(2009湖北卷文)函数的反函数是
A. B.
C. D.
[答案]D
[解析]可反解得且可得原函数中y∈R、y≠-1所以且x∈R、x≠-1选D
42.(2009全国卷Ⅰ文)已知函数的反函数为,则
(A)0 (B)1 (C)2 (D)4
[解析]本小题考查反函数,基础题。
解:由题令得,即,又,所以,故选择C。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com