3、当恒成立,则实数a的范围是____。
(1)对任意x都成立;
(2)对任意x都成立。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。
例3:在ABC中,已知恒成立,求实数m的范围。
解析:由
,,恒成立,,即恒成立,
例4:(1)求使不等式恒成立的实数a的范围。
解析:由于函,显然函数有最大值,。
如果把上题稍微改一点,那么答案又如何呢?请看下题:
(2)求使不等式恒成立的实数a的范围。
解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得的最大值取不到,即a取也满足条件,所以。
所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a的取值。利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。
四:数形结合法
对一些不能把数放在一侧的,可以利用对应函数的图象法求解。
例5:已知,求实数a的取值范围。
解析:由,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由得到a分别等于2和0.5,并作出函数的图象,所以,要想使函数在区间中恒成立,只须在区间对应的图象在在区间对应图象的上面即可。当才能保证,而才可以,所以。
由此可以看出,对于参数不能单独放在一侧的,可以利用函数图象来解。利用函数图象解题时,思路是从边界处(从相等处)开始形成的。
例6:若当P(m,n)为圆上任意一点时,不等式恒成立,则c的取值范围是( )
A、 B、
C、 D、
解析:由,可以看作是点P(m,n)在直线的右侧,而点P(m,n)在圆上,实质相当于是在直线的右侧并与它相离或相切。,故选D。
其实在习题中,我们也给出了一种解恒成立问题的方法,即求出不等式的解集后再进行处理。
以上介绍了常用的五种解决恒成立问题。其实,对于恒成立问题,有时关键是能否看得出来题就是关于恒成立问题。下面,给出一些练习题,供同学们练习。
练习题:1、对任意实数x,不等式恒成立的充要条件是_______。
2、设上有意义,求实数a的取值范围.。
对于一元二次函数有:
(1)上恒成立;
(2)上恒成立
例2:若不等式的解集是R,求m的范围。
解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0。
(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;
(2)时,只需,所以,。
对于一次函数有:
例1:若不等式对满足的所有都成立,求x的范围。
解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:,;令,则时,恒成立,所以只需即,所以x的范围是。
22.已知各项均不为零的数列的前项和为
且,其中
① 求数列的通项公式
② 求证:对任意的正整数,不等式都成立
21.设的定义域为,对于任意正整数、,恒有,且当时,,
①求的值;
②求证在上是增函数
③解关于的不等式,其中
20.数列满足,,
①记,求证:是等比数列;
②求数列的通项公式;
③,求数列的前n项和
19.已知的顶点、顶点C在直线上
①若,求点C的坐标;
②设,且,求角C。
18.已知是函数的一个极值点
①求的值;
②最函数的单调区间;
③当,直线与函数的图象有2个交点,求的取值范围。
17.已知函数,且
①求的最大值及最小值;
②求的在定义域上的单调区间。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com