8.已知关于x的一元二次方程mx2-4x+4=0, ①
x2-4mx+4m2-4m-5=0. ②
求使方程①②都有实根的充要条件.
解:方程①有实数根的充要条件是Δ1=(-4)2-16m≥0,即m≤1;
方程②有实数根的充要条件是Δ2=(4m)2-4(4m2-4m-5)≥0,即m≥-.
∴方程①②都有实数根的充要条件是-≤m≤1.
7.(2004年湖南,9)设集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(UB)的充要条件是
A.m>-1,n<5 B.m<-1,n<5
C.m>-1,n>5 D.m<-1,n>5
解析:∵UB={(x,y)|n<x+y},将P(2,3)分别代入集合A、B取交集即可.∴选A.
答案:A
6.已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求数列{an}成等比数列的充要条件.
分析:先根据前n项和公式,导出使{an}为等比数列的必要条件,再证明其充分条件.
解:当n=1时,a1=S1=p+q;
当n≥2时,an=Sn-Sn-1=(p-1)·pn-1.
由于p≠0,p≠1,∴当n≥2时,{an}是等比数列.要使{an}(n∈N*)是等比数列,则=p,即(p-1)·p=p(p+q),∴q=-1,即{an}是等比数列的必要条件是p≠0且p≠1且q=-1.
再证充分性:
当p≠0且p≠1且q=-1时,Sn=pn-1,
an=(p-1)·pn-1,=p(n≥2),
∴{an}是等比数列.
培养能力
5.(2004年北京,5)函数f(x)=x2-2ax-3在区间[1,2]上存在反函数的充分必要条件是
A.a∈(-∞,1] B.a∈[2,+∞)
C.α∈[1,2] D.a∈(-∞,1]∪[2,+∞)
解析:∵f(x)=x2-2ax-3的对称轴为x=a,∴y=f(x)在[1,2]上存在反函数的充要条件为[1,2](-∞,a]或[1,2][a,+∞),即a≥2或a≤1.
答案:D
4.命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.
答案:充分不必要
3.(2005年海淀区第一学期期末练习)在△ABC中,“A>B”是“cosA<cosB”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:在△ABC中,A>BcosA<cosB(余弦函数单调性).
答案:C
2.(2003年北京高考题)“cos2α=-”是“α=kπ+,k∈Z”的
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分又不必要条件
解析:cos2α=-2α=2kπ±α=kπ±.
答案:A
1.(2004年重庆,7)已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件,那么p是q成立的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:依题意有pr,rs,sq,∴prsq.但由于rp,∴qp.
答案:A
5.(2005年春季上海,16)若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:若a>0且b2-4ac<0,则对任意x∈R,有ax2+bx+c>0,反之,则不一定成立.如a=0,b=0且c>0时,也有对任意x∈R,有ax2+bx+c>0.因此应选A.
答案:A
●典例剖析
[例1] 使不等式2x2-5x-3≥0成立的一个充分而不必要条件是
A.x<0 B.x≥0
C.x∈{-1,3,5} D.x≤-或x≥3
剖析:∵2x2-5x-3≥0成立的充要条件是x≤-或x≥3,∴对于A当x=-时2x2-5x-3≥0.同理其他也可用特殊值验证.
答案:C
[例2] 求证:关于x的方程ax2+bx+c=0有一根为1的充分必要条件是a+b+c=0.
证明:(1)必要性,即“若x=1是方程ax2+bx+c=0的根,则a+b+c=0”.
∵x=1是方程的根,将x=1代入方程,得a·12+b·1+c=0,即a+b+c=0.
(2)充分性,即“若a+b+c=0,则x=1是方程ax2+bx+c=0的根”.
把x=1代入方程的左边,得a·12+b·1+c=a+b+c.∵a+b+c=0,∴x=1是方程的根.
综合(1)(2)知命题成立.
深化拓展
求ax2+2x+1=0(a≠0)至少有一负根的充要条件.
证明:必要性:
(1)方程有一正根和一负根,等价于
a<0.
(2)方程有两负根,等价于
0<a≤1.
综上可知,原方程至少有一负根的必要条件是a<0或0<a≤1.
充分性:由以上推理的可逆性,知当a<0时方程有异号两根;当0<a≤1时,方程有两负根.故a<0或0<a≤1是方程ax2+2x+1=0至少有一负根的充分条件.
答案:a<0或0<a≤1.
[例3] 下列说法对不对?如果不对,分析错误的原因.
(1)x2=x+2是x=x2的充分条件;
(2)x2=x+2是x=x2的必要条件.
解:(1)x2=x+2是x=x2的充分条件是指x2=x+2x=x2.
但这里“”不成立,因为x=-1时,“”左边为真,但右边为假.得出错误结论的原因可能是应用了错误的推理:
x2=x+2x=x2=x.
这里推理的第一步是错误的(请同学补充说明具体错在哪里).
(2)x2=x+2是x=x2的必要条件是指x=x2x2=x+2.
但这里“”不成立,因为x=0时,“”左边为真,但右边为假.得出错误结论的原因可能是用了错误的推理:
x=x2=xx+2=x2.
这里推理的第一步是错误的(请同学补充说明具体错在哪里).
评述:此题的解答比较注重逻辑推理.事实上,也可以从真值集合方面来分析:x2=x+2的真值集合是{-1,2},x=x2的真值集合是{0,2},{-1,2}{0,2},而{0,2} {-1,2},所以(1)(2)两个结论都不对.
●闯关训练
夯实基础
4.若条件p:a>4,q:5<a<6,则p是q的______________.
解析:a>45<a<6,如a=7虽然满足a>4,但显然a不满足5<a<6.
答案:必要不充分条件
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com