6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:
(1)每盒各有一个奇数号球的概率;
(2)有一盒全是偶数号球的概率.
解:6个球平均分入三盒有CCC种等可能的结果.
(1)每盒各有一个奇数号球的结果有AA种,所求概率P(A)==.
(2)有一盒全是偶数号球的结果有(CC)·CC,
所求概率P(A)==.
培养能力
5.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一人抽到选择题的概率是多少?
分析:(1)是等可能性事件,求基本事件总数和A包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.
解:(1)基本事件总数甲、乙依次抽一题有CC种,事件A包含的基本事件数为CC,故甲抽到选择题,乙抽到判断题的概率为=.
(2)A包含的基本事件总数分三类:
甲抽到选择题,乙抽到判断题有CC;
甲抽到选择题,乙也抽到选择题有CC;
甲抽到判断题,乙抽到选择题有CC.
共CC+CC+CC.
基本事件总数CC,
∴甲、乙二人中至少有一人抽到选择题的概率为=或P()==,P(A)=1-P()=.
4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是________.(结果用分数表示)
解析:总的排法有A种.
最先和最后排试点学校的排法有AA种.
概率为=.
答案:
3.(2004年全国Ⅰ,理11)从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为
A. B. C. D.
解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.
∴概率为=.
答案:D
2.(2004年湖北模拟题)甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是
A. B. C. D.
解析:甲、乙二人依次抽一题有C·C种方法,
而甲抽到判断题,乙抽到选择题的方法有CC种.
∴P==.
答案:C
1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为
A. B. C. D.
解析:P==.
答案:B
2.仿照1中,你能解例题中的(2)吗?
●闯关训练
夯实基础
1.在上例(1)中,读者如何解释下列两种解法的意义.P(A)==或P(A)=··= .
5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.
解析:P==.
答案:
●典例剖析
[例1]用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.
解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C种,另一个不同数字的取法有C种.而这取出的五个数字共可排出C个不同的五位数,故恰有4个相同数字的五位数的结果有CCC个,所求概率
P==.
答:其中恰恰有4个相同数字的概率是.
[例2] 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是,求该班中男女生相差几名?
解:设男生有x名,则女生有(36-x)人,选出的2名代表是同性的概率为P==,
即+=,
解得x=15或21.
所以男女生相差6人.
[例3]把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:
(1)无空盒的概率;
(2)恰有一个空盒的概率.
解:4个球任意投入4个不同的盒子内有44种等可能的结果.
(1)其中无空盒的结果有A种,所求概率
P==.
答:无空盒的概率是.
(2)先求恰有一空盒的结果数:选定一个空盒有C种,选两个球放入一盒有CA种,其余两球放入两盒有A种.故恰有一个空盒的结果数为CCAA,所求概率P(A)==.
答:恰有一个空盒的概率是.
深化拓展
把n+1个不同的球投入n个不同的盒子(n∈N*).求:
(1)无空盒的概率;(2)恰有一空盒的概率.
解:(1).
(2).
[例4]某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:
(1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?
解:5把钥匙,逐把试开有A种等可能的结果.
(1)第三次打开房门的结果有A种,因此第三次打开房门的概率P(A)==.
(2)三次内打开房门的结果有3A种,因此,所求概率P(A)==.
(3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有AA种,从而三次内打开的结果有A-AA种,所求概率P(A)==.
方法二:三次内打开的结果包括:三次内恰有一次打开的结果有CAAA种;三次内恰有2次打开的结果有AA种.因此,三次内打开的结果有CAAA+AA种,所求概率
P(A)==.
特别提示
4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.
解析:恰有3个红球的概率P1==.
有4个红球的概率P2==.
至少有3个红球的概率P=P1+P2=.
答案:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com