4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
3、例题分析:
例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于0℃时,冰融化”;
(3)“某人射击一次,中靶”;
(4)“如果a>b,那么a-b>0”;
(5)“掷一枚硬币,出现正面”;
(6)“导体通电后,发热”;
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(8)“某电话机在1分钟内收到2次呼叫”;
(9)“没有水份,种子能发芽”;
(10)“在常温下,焊锡熔化”.
答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.
例2 某射手在同一条件下进行射击,结果如下表所示:
射击次数n |
10 |
20 |
50 |
100 |
200 |
500 |
击中靶心次数m |
8 |
19 |
44 |
92 |
178 |
455 |
击中靶心的频率
|
|
|
|
|
|
|
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。
解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.
(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。
小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。
练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:
时间范围 |
1年内 |
2年内 |
3年内 |
4年内 |
新生婴儿数 |
5544 |
9607 |
13520 |
17190 |
男婴数 |
2883 |
4970 |
6994 |
8892 |
男婴出生的频率 |
|
|
|
|
(1)填写表中男婴出生的频率(结果保留到小数点后第3位);
(2)这一地区男婴出生的概率约是多少?
答案:(1)表中依次填入的数据为:0.520,0.517,0.517,0.517.
(2)由表中的已知数据及公式fn(A)= 即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.
例3 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
分析:中靶的频数为9,试验次数为10,所以靶的频率为 =0.9,所以中靶的概率约为0.9.
解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.
例4 如果某种彩票中奖的概率为 ,那么买1000张彩票一定能中奖吗?请用概率的意义解释。
分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
解:不一定能中奖,因为,买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖。
例5 在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。
分析:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。
解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。
小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。
2、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)= 为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
(7)似然法与极大似然法:见课本P111
1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.
22.请以“说身边事谈发展”为话题写一篇文章,文体不限,题目自拟,字数不少于800。
21.拟写结束语(5分) 毛泽东诗词的思想性和艺术性都很高,能给人以深刻的启示,有些诗词至今脍炙人口。现在请你为“毛泽东诗词朗诵会”的主持人写一段结束语,来结束这次朗诵会。 要求:①要引用毛泽东的诗词;②语言连贯且富有激情;③不少于50字。 结束语:_________________________________
20.2009年是我国建国六十周年,请在下面的横线上分别填写适当的句子,作为某学校“国庆”主题文艺晚会主持人的开场白。要求句式基本一致,文意贯通。(6分)
甲:六十年的风霜雨雪,
乙:__________________;
甲:六十年的上下求索,
乙:六十年的同舟共济;
甲:滔滔黄河,淹不尽浩浩中华魂,
乙:__________________________;
甲:又是一年秋风送爽时,
乙:又是一轮花好月圆日;
甲:走进十月,我们用一样的眼神凝望金秋,
乙:__________________________________;
合:今天,我们亲爱的祖国母亲就要迎来六十岁华诞。让我们共祝祖国生日快乐,共祝中华繁荣富强。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com