0  300631  300639  300645  300649  300655  300657  300661  300667  300669  300675  300681  300685  300687  300691  300697  300699  300705  300709  300711  300715  300717  300721  300723  300725  300726  300727  300729  300730  300731  300733  300735  300739  300741  300745  300747  300751  300757  300759  300765  300769  300771  300775  300781  300787  300789  300795  300799  300801  300807  300811  300817  300825  447090 

4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为 + =

试题详情

3.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。

试题详情

2.解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)= + =

试题详情

1.解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。(3)中的2个事件既是互斥事件也是对立事件。

试题详情

6、评价标准:

试题详情

4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是 ,从中取出2粒都是白子的概率是 ,现从中任意取出2粒恰好是同一色的概率是多少?

试题详情

3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:

(1)射中10环或9环的概率;

(2)少于7环的概率。

试题详情

2.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)= ,P(B)= ,求出现奇数点或2点的概率之和。

试题详情

1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。

(1)恰好有1件次品恰好有2件次品;

(2)至少有1件次品和全是次品;

(3)至少有1件正品和至少有1件次品;

(4)至少有1件次品和全是正品;

试题详情

5、自我评价与课堂练习:

试题详情


同步练习册答案