0  301309  301317  301323  301327  301333  301335  301339  301345  301347  301353  301359  301363  301365  301369  301375  301377  301383  301387  301389  301393  301395  301399  301401  301403  301404  301405  301407  301408  301409  301411  301413  301417  301419  301423  301425  301429  301435  301437  301443  301447  301449  301453  301459  301465  301467  301473  301477  301479  301485  301489  301495  301503  447090 

重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.

难点: 理解弧度制定义,弧度制的运用.

试题详情

3、情态与价值

通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.

试题详情

2、过程与方法

创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.

试题详情

1、知识与技能

(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.

试题详情

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

试题详情

1.作业:习题1.1 A组第1,2,3题.

试题详情

8.学习小结

(1)    你知道角是如何推广的吗?

(2)    象限角是如何定义的呢?

(3)    你熟练掌握具有相同终边角的表示了吗?会写终边落在轴、轴、直

线上的角的集合.

试题详情

7.[展示投影]练习

教材第3、4、5题.

注意: (1);(2)是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差的整数倍.

试题详情

6.[展示投影]例题讲评

例1. 例1在范围内,找出与角终边相同的角,并判定它是第几象限角.(注:是指)

例2.写出终边在轴上的角的集合.

例3.写出终边直线在上的角的集合,并把中适合不等式

的元素写出来.

试题详情

5.探究:将角按上述方法放在直角坐标系中后,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系中任意一条射线(如图1.1-5),以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?请结合4.(2)口答加以分析.

[展示课件]不难发现,在教材图1.1-5中,如果的终边是,那么角的终边都是,而,.

,则角都是的元素,角也是的元素.因此,所有与角终边相同的角,连同角在内,都是集合的元素;反过来,集合的任一元素显然与角终边相同.

一般地,我们有:所有与角终边相同的角,连同角在内,可构成一个集合

,即任一与角终边相同的角,都可以表示成角与整数个周角的和.

试题详情


同步练习册答案