2.类比推理:通过两类事物的相似性或一致性,用一类事物的性质去推测另一类事物的性质,得出一个明确的结论.常见的有结论类比和方法类比.
1.归纳推理:主要应用于先由已知条件归纳出一个结论,并加以证明或以推理作为题目的已知条件给出猜测的结论,并要求考生会应用或加以证明.
7.已知:
通过观察上述两等式的规律,请你写出一般性的命题:
__________________________________________=并给出( * )式的证明。
一般形式:
证明 左边 =
=
=
= =
∴原式得证
(将一般形式写成
等均正确。)
例1.通过计算可得下列等式:
┅┅
将以上各式分别相加得:
即:
类比上述求法:请你求出的值..
[解]
┅┅
将以上各式分别相加得:
所以:
6.在等差数列中,若,则有等式
成立,类比上述性质,相应地:在等比数列中,若,
则有等式 成立.
5.依次有下列等式:,按此规律下去,第8个等式为 8+9+10+11+12+13+14+15+16+17+18+19+20+21+22= 。
4.若数列{},(n∈N)是等差数列,则有数列b=(n∈N)也是等差数列,类比上述性质,相应地:若数列{c}是等比数列,且c>0(n∈N),则有d=______ ______ (n∈N)也是等比数列。
3. 由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理出一个结论,则这个结论是 ( A )
(A) 正方形的对角线相等 (B) 平行四边形的对角线相等
(C) 正方形是平行四边形 (D)其它
2.在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A-BCD的三个侧面ABC、ACD、ADB 两两相互垂直,则可得” ( C )
(A)AB2+AC2+ AD2=BC2+ CD2 + BD2 (B)
(C) (D)AB2×AC2×AD2=BC2 ×CD2 ×BD2
1. 观察下列数的特点
1,2,2,3,3,3,4,4,4,4,… 中,第100项是( C )
(A) 10 (B) 13 (C) 14 (D) 100
解析 . 由规律可得:数字相同的数依次个数为
1,2,3,4,… n 由≤100 n ∈ 得,n=14,所以应选(C)
7.创新性问题
例9(2007北京理)(本小题共13分)已知集合,其中,由中的元素构成两个相应的集合:,.
其中是有序数对,集合和中的元素个数分别为和.
若对于任意的,总有,则称集合具有性质.
(I)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和;
(II)对任何具有性质的集合,证明:;
(III)判断和的大小关系,并证明你的结论.
(I)解:集合不具有性质.
集合具有性质,其相应的集合和是,
.
(II)证明:首先,由中元素构成的有序数对共有个.
因为,所以;
又因为当时,时,,所以当时,.
从而,集合中元素的个数最多为,
即.
(III)解:,证明如下:
(1)对于,根据定义,,,且,从而.
如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立.
故与也是的不同元素.
可见,中元素的个数不多于中元素的个数,即,
(2)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,
故与也是的不同元素.
可见,中元素的个数不多于中元素的个数,即,
由(1)(2)可知,.
[专题突破]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com