3.带负电的小球用绝缘丝线悬挂于O点在匀强磁场中摆动,当小球每次通过最低点A时:( )
A、摆球受到的磁场力相同
B、摆球的动能相同
C、摆球的动量相同
D、向右摆动通过A点时悬线的拉力大于向左摆动通过A点时悬线的拉力
2.如图所示,宽h=2cm的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现有一群正粒子从O点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm,则 ( )
A.右边界:-4c <y<4cm有粒子射出
B.右边界:y>4cm和y<-4cm有粒子射出
C.左边界:y>8cm有粒子射出
D.左边界:0<y<8cm有粒子射出
1.如图所示,铜质导电板置于匀强磁场中,通电时铜板中电流方向向上.由于磁场的作用,则( )
A.板左侧聚集较多电子,使b点电势高于a点电势
B.板左侧聚集较多电子,使a点电势高于b点电势
C.板右侧聚集较多电子,使a点电势高于b点电势
D.板右侧聚集较多电子,使b点电势高于a点电势
3、复习方案
基础过关:
重难点:带电粒子在复合场中的运动
(原创)例 3. 如图所示,坐标系xOy在竖直平面内,长为L的水平轨道AB光滑且绝缘,B点坐标为.有一质量为m、电荷量为+q的带电小球(可看成质点)被固定在A点.已知在第一象限内分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强大小,磁场为水平方向(在图中垂直纸面向外),磁感应强度大小为B;在第二象限内分布着沿x轴正向的水平匀强电场,场强大小.现将带电小球由A点从静止释放,设小球所带的电量不变.试求:
(1)小球运动到B点的速度大小;
(2)小球第一次落地点与O点之间的距离;
(3)小球从开始运动到第一次落地所经历的时间
典型例题
例4. (09年浙江卷)25.(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。在 xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。
解析:带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由
可得
方向沿y轴正方向。
带电微粒进入磁场后,将做圆周运动。 且
r=R
如图(a)所示,设磁感应强度大小为B。由
得
方向垂直于纸面向外
(2)这束带电微粒都通过坐标原点。
方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。v
方法二:从任一点P 水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(-Rsinθ,Rcosθ),圆周运动轨迹方程为
得
x=0 x=-Rsinθ
y=0 或 y=R(1+cosθ)
(3)这束带电微粒与x轴相交的区域是x>0
带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。
所以,这束带电微粒与x同相交的区域范围是x>0.
答案:(1);方向垂直于纸面向外;(2)见解析;(3)与x同相交的区域范围是x>0。
点评:带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:
a. 匀速直线运动:自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛伦兹力作用。因为重力、电场力均为恒力,若两者的合力不能与洛伦兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
b. 匀速圆周运动:自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛伦兹力提供向心力,使带电粒子作匀速圆周运动。
c. 较复杂的曲线运动:在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。此类问题,通常用能量观点分析解决,带电粒子在复合场中若有轨道约束,或匀强电场或匀速磁场随时间发生周期性变化等原因,使粒子的运动更复杂,则应视具体情况进行分析。
第4课时 磁场单元测试
6.霍尔元件:1879年美国物理学家E.H.霍尔观察到,在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差。这是因为薄片中的载流子就在洛伦兹力的作用下向着与电流和磁场都垂直的方向漂移,使得那两个极板间出现电压,这种电压后来就叫做霍尔电压。它与电流强度、磁感应强度、长方体形导体的厚度都有关系。利用这种效应制成的元件可以制成多种传感器。例如,由于霍尔元件体积很小,它可以用来制作探测磁场的探头,还可以应用在其他与磁场有关的自动控制系统中。
5.电磁流量计:为监测某化工厂的污水排放量等,技术人员在排污管末端安装了的流量计.该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加磁感应强度大小为B的匀强磁场,在前后两个内侧面分别固定有金属板作为电极.污水(含正负离子)充满管口从左向右流经该装置时,由于受到磁场的作用会打在上下两个极板上,电压表将显示两个电极间的电压U.则可以推出污水流量Q与电压表的示数U有一定的关系。
4.回旋加速器:要认识原子核内部的情况,必须把核“打开”进行“观察”。然而,原子核被强大的核力约束,只有用极高能量的粒子作为“炮弹”去轰击,才能把它“打开”。产生这些高能“炮弹”的“工厂”就是各种各样的粒子加速器,人们首先想到用电场去加速带电粒子,然而产生很高的加速电压在技术是困难的。所以就想到了多次(多级)加速的方法:回旋加速器,它用电场加速,磁场让粒子“转圈圈”。这样技术上的高压可以通过多次加速实现,且可以减少加速器装置所占的空间。
3.质谱仪
质谱仪最初是由汤姆生的学生阿斯顿设计的,让带电粒子飘进加速电场,后进入偏转磁场最终打在照相底片上,假设粒子质量为m,电量为q,加速电场电压为U,磁感应强度为B,可以得到打在照相底片的位置距离进入磁场,从这个结果可以看出如果粒子的电荷量相同而质量不同将打在照相底片的不同地方,他用质谱仪发现了氖20和氖22,证实了同位素的存在。现在的质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具。
2.磁流体发电机
磁流体发电机是一项新兴技术,它可以把物体的内能直接转化成电能,两个平行金属板之间有一个很强的匀强磁场,将一束等离子体(即高温下电离的气体,含有大量的正、负带电粒子)喷入磁场,这些等离子体在洛伦兹力的作用下,回分别打在两个金属板上形成电源的正负极,就可以给外电路供电。若外电路接通,等离子体时刻向两个金属板聚集形成持续电源。
1.速度选择器
两平行金属板(平行金属板足够长)间有电场和磁场,一个带电的粒子(重力忽略不计)垂直于电、磁场的方向射入复合场,具有不同速度的带电粒子受力不同,射入后发生偏转的情况不同。如果能满足所受到的洛伦兹力等于电场力,那这一粒子将沿直线飞出。这种装置能把具有某一定速度(必须满足V=E/B)的粒子选择出来,所以叫做速度选择器。而且:在装置确定的情况下,速度选择器所选则的粒子,与电性无关,只与带电粒子的速度大小方向有关,是名副其实的速度选择器。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com