0  308823  308831  308837  308841  308847  308849  308853  308859  308861  308867  308873  308877  308879  308883  308889  308891  308897  308901  308903  308907  308909  308913  308915  308917  308918  308919  308921  308922  308923  308925  308927  308931  308933  308937  308939  308943  308949  308951  308957  308961  308963  308967  308973  308979  308981  308987  308991  308993  308999  309003  309009  309017  447090 

(四)沟通发展、归纳小结

1.沟通发展

仿照本节课例题,同桌俩人一人编题一人解答。

[设计意图]通过练习进一步巩固所学知识,培养和提升学生的认知水平。沟通发展,有助于及时查漏补缺,保持学生学习的热情和信心。

2.课后小节

①理解循环结构的逻辑。

②明确条件结构与循环结构的区别,联系。

③当型循环结构与直到型循环结构的区别。

④数学思想方法:算法思想,类比方法。

[设计意图]通过小结使学生对本节课的知识有一个全面的认识,掌握知识。为今后学习其它知识打基础。

试题详情

(三)质疑问难、论争辩难

例3 图(1),图(2),图(3),图(4)是为计算而绘制的程序框图。根据程序框图回答下面的问题:

图(1)          图(2)

图(3)         图(4)

①其中正确的程序框图有哪几个?错误的要指出错在哪里。

②错误的程序框图中,按该程序框图所蕴含的算法,能执行到底吗?若能执行到底,最后输出的结果是什么?

③根据上面的回答总结出应用循环结构编制程序框图应该注意哪几方面的问题?

[设计意图]通过类比,自主探究,帮助学生深入理解知识,完善知识结构,提升认知水平。通过小组讨论,实现生生互动,师生互助,丰富情感体验,活跃课堂气氛。

试题详情

(二)授新设疑

1.循序渐进,理解知识

(1)引进“计数变量” 、“累加变量”。借助“计数变量”和 “累加变量”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

①将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

引例“求的值”这个问题的自然求和过程可以表示为:

用递推公式表示为: 

直接利用这个递推公式构造算法在步骤中使用了共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤中提取出共同的结构,即第步的结果=第(-1)步的结果+。若引进一个计数变量来表示计算到第几步,一个累加变量来表示每一步的计算结果,则第步可以表示为赋值过程

②“”、“”的含义

利用多媒体动画展示计算机中计数器的工作原理,借助形象直观对知识点进行强调说明

1)的作用是将赋值号右边表达式的值赋给赋值号左边的变量

2)赋值号“=”右边的变量“”表示前一步累加所得的和,赋值号“=”左边的“”表示该步累加所得的和,含义不同。

3)赋值号“=”与数学中的等号意义不同。在数学中是不成立的。

4)的作用是将赋值号右边表达式的值赋给赋值号左边的变量。(类比 理解)

借助“计数变量”、“累加变量”既突破了难点,同时也使学生理解了“”、“”的含义。

③初始化变量,设置循环终止条件

的初始值为0,的值由1增加到100,可以初始化循环变量和设置循环终止条件。

(2)循环结构的概念

从某处开始,按照一定条件,反复执行某一处理步骤的结构称为循环结构。

教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念(循环变量、循环体、循环终止的条件)。

[设计意图]这样讲解既突出了重点又突破了难点,同时学生在教师引导下,在已有探索经验的基础上,借助多媒体的形象直观,共同完成问题的抽象过程和算法的构建过程。体现研究问题常用的“由特殊到一般”的思维方式。

2.类比探究,掌握知识

例1:改造引例的程序框图表示

①求的值

②求的值

③求的值

此例可由学生独立思考、回答,师生共同点评完成。

[设计意图]通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:

①   确定循环变量和初始值 ② 确定循环体 ③ 确定循环终止条件。

例2:根据程序框图回答下面的问题

图A        图B

(1) 图中箭头指向①时,输出=______;指向②时输出=_____。

(2)该程序框图的算法功能是_______________________。

(3)去掉条件“”按程序框图所蕴含的算法,能执行到底吗,若能执行到底,最后输出的结果是什么?

对比练习:

(1)图B输出=_____。

(2)图A指向②时与图B有何不同?你能得到什么结论?

(3)对比“引例”与“例2”的程序框图,试说明二者的区别和联系?

可由学生小组讨论,教师巡视,加强对学生的个别指导,再由学生分析。

例2是写出程序框图的运算结果,及其功能。

[设计意图]设计此例的目的是让学生通过类比意识到:

①循环结构不能是永无终止的死循环,一定要在某个条件下终止循环,这就需要条件结构来做出判断,因此,循环结构一定包含条件结构。

②循环结构中语句的顺序对算法的影响。

③当型循环结构与直到型循环结构的区别。

试题详情

(一)创设情境

引例:德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=?

 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。(课本例6)你能否写出求的值的一个算法,并用框图表示你的算法。

此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解。

[设计意图]通过高斯求和的故事,复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

试题详情

重点:理解循环结构,能识别和画出简单的循环结构框图。

难点:循环结构中循环条件和循环体的确定。

试题详情

理解循环结构,能识别和理解简单的框图的功能,通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力;能运用循环结构设计程序框图解决简单的问题,感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。

试题详情

建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构。基于以上理论,本节课遵循引导发现,循序渐进的思路,采用问题探究式教学,运用多媒体,投影仪辅助,倡导“自主、合作、探究”的学习方式。具体流程如下:

创设情景(课前准备、引入实例)→授新设疑(自主探索形成概念→理解概念能识别框图)→质疑问难、论争辩难(进一步加深对概念的理解→突破难点)→沟通发展(反馈练习→归纳小结)→布置作业。

试题详情

学生已经学习了有关算法和框图的基础知识。绝大多数同学对算法和框图的学习有相当的兴趣和积极性。但在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强。

试题详情

《循环结构》是人民教育出版社课程教材研究所编著的《普通高中课程标准试验教科书数学3(必修)》(A版)中§1。1。2的第二课时的内容。(1)算法是高中数学课程中的新内容,算法的思想是非常重要的,算法思想已逐渐成为每个现代人所必须具备的数学素养。(2)本节课的内容是循环结构,它与顺序结构、条件分支结构是算法的三种基本逻辑结构,可以表示任何一个算法。并且循环结构是算法这一部分的重点和难点,它的重要性就是充分体现计算机的优势,也即能以极快的速度进行重复计算。

试题详情

本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

本节课的设计遵循“直观感知--操作确认--思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。

本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。

福建省宁德第一中学  叶洪康

点评

本节课教师利用教室现有实物,如日光灯管、地面、教师个人、门等做教具,让学生认识和理解直线和平面平行的理由和条件。学生在应用观察、猜想等手段探索研究判定定理时,能获得视觉上的愉悦,增强探求的好奇心。学生经过思维活动,从中找出一类事物的本质属性,最后通过概括得出新的数学概念。创设的问题情景有效,能遵循认识规律,从感性到理性,从具体到抽象。

本节课的设计符合新课程立几中“直观感知--操作确认--思辩论证”的教学理念。整体设计中规中矩,自然流畅。教师对问题、例题的设计都别具匠心,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固已有知识,又为新知识提供了附着点,充分体现学生的主体地位。

本节课蕴涵着化归思想,设计中注重对学生进行思想方法的训练,通过一题多解、一题多变,渗透了联系与转化的思想,使学生学会思考、掌握方法,有利于培养学生思维的广阔性与深刻性。

11、循环结构

试题详情


同步练习册答案