8.已知f(cosx)=cos5x,则f(sinx)=___________.
7. (05江苏卷2)函数的反函数的解析表达式为 _______________.
6. (06山东卷)设f(x)= 则不等式f(x)>2的解集为_____(1,2) ( ,+∞)
解:令>2(x<2),解得1<x<2。令>2(x³2)解得xÎ(,+∞)
5.(06安徽卷)函数对于任意实数满足条件,若则_______。
解:由得,所以,则。
4.(06浙江卷)对a,bR,记max{a,b}=,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是____.
解:当x<-1时,|x+1|=-x-1,|x-2|=2-x,因为(-x-1)-(2-x)=-3<0,所以2-x>-x-1;当-1£x<0.5时,|x+1|=x+1,|x-2|=2-x,因为(x+1)-(2-x)=2x-1<0,x+1<2-x;当0.5£x<2时,x+1³2-x;当x³2时,|x+1|=x+1,|x-2|=x-2,显然x+1>x-2;
故据此求得最小值为。选C
3.(06陕西卷)函数f(x)= (x∈R)的值域是( ) A.(0,1) B.(0,1] C.[0,1) D.[0,1]
2.(06湖南卷)函数的定义域是_______ [4, +∞)
1.(06湖北卷)设,则的定义域为_______________
解:f(x)的定义域是(-2,2),故应有-2<<2且-2<<2解得-4<x<-1或1<x<4故选B
例1.作出下列函数的图象(1)y=|x-2|(x+1);
解:(1)当x≥2时,即x-2≥0时,
当x<2时,即x-2<0时,
这是分段函数,每段函数图象可根据二次函数图象作出(见图6)
例2.
解析:
,
例3.(福建卷)已知是二次函数,不等式的解集是且在区间上的最大值是12。 (I)求的解析式; (II)是否存在实数使得方程在区间内有且只有两个不等的实数根?若存在,求出的取值范围;若不存在,说明理由。
解:(I)是二次函数,且的解集是
可设在区间上的最大值是
由已知,得
(II)方程等价于方程
设则
当时,是减函数;当时,是增函数。
方程在区间内分别有惟一实数根,而在区间内没有实数根,所以存在惟一的自然数使得方程在区间内有且只有两个不同的实数根。
例4:已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)(1)求证两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围
解: (1)证明由消去y得ax2+2bx+c=0
Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4[(a+c2]
∵a+b+c=0,a>b>c,∴a>0,c<0 ∴c2>0,∴Δ>0,即两函数的图象交于不同的两点
(2)解设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=-,x1x2=
|A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2
∵a>b>c,a+b+c=0,a>0,c<0,∴a>-a-c>c,解得∈(-2,-)
∵的对称轴方程是 ∈(-2,-)时,为减函数
∴|A1B1|2∈(3,12),故|A1B1|∈()
例5:已知f(x)=x2+c,且f[f(x)]=f(x2+1) (1)设g(x)=f[f(x)],求g(x)的解析式;(2)设φ(x)=g(x)-λf(x),试问 是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,且在(-1,0)内是增函数
点拨与提示:由f[f(x)]=f(x2+1)求出c,进而得到函数的解析式,利用导数研究函数的单调性.
解: (1)由题意得f[f(x)]=f(x2+c)=(x2+c)2+c, f(x2+1)=(x2+1)2+c,∵f[f(x)]=f(x2+1)
∴(x2+c)2+c=(x2+1)2+c,∴x2+c=x2+1,∴c=1 ∴f(x)=x2+1,g(x)=f[f(x)]=f(x2+1)=(x2+1)2+1
(2)φ(x)=g(x)-λf(x)=x4+(2-λ)x2+(2-λ)
若满足条件的λ存在,则φ′(x)=4x3+2(2-λ)x
∵函数φ(x)在(-∞,-1)上是减函数, ∴当x<-1时,φ′(x)<0
即4x3+2(2-λ)x<0对于x∈(-∞,-1)恒成立
∴2(2-λ)>-4x2, ∵x<-1,∴-4x2<-4 ∴2(2-λ)≥-4,解得λ≤4
又函数φ(x)在(-1,0)上是增函数 ∴当-1<x<0时,φ′(x)>0
即4x2+2(2-λ)x>0对于x∈(-1,0)恒成立
∴2(2-λ)<-4x2, ∵-1<x<0,∴-4<4x2<0 ∴2(2-λ)≤-4,解得λ≥4
故当λ=4时,φ(x)在(-∞,-1)上是减函数,在(-1,0)上是增函数,即满足条件的λ存在
例6. 已知,t∈[,8],对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。
解:∵t∈[,8],∴f(t)∈[,3]原题转化为:>0恒成立,为m的一次函数(这里思维的转化很重要)当x=2时,不等式不成立。∴x≠2。令g(m)=,m∈[,3]问题转化为g(m)在m∈[,3]上恒对于0,则:;解得:x>2或x<-1
例8.(见备考指南148页例3)
解:
综上所述,得原不等式的解集为
;;;;
例9. 若方程上有唯一解,
求m的取值范围。
解:原方程等价于
令,在同一坐标系内,画出它们的图象,
其中注意,当且仅当两函数的图象在[0,3)上有唯一公共点时,原方程有唯一解,由下图可见,当m=1,或时,原方程有唯一解,因此m的取值范围为[-3,0]{1}。
例10.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=x,均不相交.试证明对一切都有.
证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则
又二次方程ax2+bx+c=±x无实根,故 Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即b2-4ac<-1,所以|b2-4ac|>1.
15.设函数f(x)=x2+mx+n,若不等式的解集为{x|2≤x≤3或x=6},求m,n的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com