例6. 把直线向下平移2个单位得到的图像解析式为___________。
解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行
直线在y轴上的截距为,故图像解析式为
例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线:;:。当,时,
直线与直线平行,。
又直线在y轴上的截距为2,
故直线的解析式为
例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为
由图可知一次函数的图像过点(1,0)、(0,2)
有
故这个一次函数的解析式为
已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
解:设一次函数解析式为
由题意得
故这个一次函数的解析式为
例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
解:一次函数的图像过点(2,-1)
,即
故这个一次函数的解析式为
变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知
,故一次函数的解析式为
注意:利用定义求一次函数解析式时,要保证。如本例中应保证
解:过P作内公切线交AB于E,由切线长定理知EB=EP,EP=EA,即EB=EP=EA,根据定理(在一个三角形中,一边上的中线等于该边的一半,那么这个三角形是直角三角形)知为直角三角形.
此题中AB为外公切线与两圆的切点,P为两圆切点.
我们习惯上把称为切点三角形.
在关于两圆外切关系的几何证明题中,运用切点三角形来分析问题,解决问题,可以收到事半功倍的效果,它的应用在两圆外切中尤为重要.
性质(4) 切点三角形是直角三角形.
例4(重庆市中考题)如图4, ⊙⊙外切于点P,内公切线PC与外公切线AB(A、B分别是⊙⊙上的切点)相交于点C,已知⊙⊙的半径分别为3、4,则PC的长等于________.
分析:由于AB为外公切线,由性质(2)知
又由性质(4)知为直角在三角形且CP=CB=AC,故CP为斜边AB上的中线,因此
例5.如图5, ⊙⊙外切于点P,AB为两圆的外公切线,切点为A、B,连心线
⊙于C,交⊙于D,CA与DB的延长线相交于Q,求证:.
简析:连AP、BP,由上题知∠APB=Rt∠,又∠CAP=∠PBD=Rt∠,故由四边形内角和定理知∠Q=Rt∠,即
两圆外切关系的这些性质,在解题时要灵活的应用.在例4、例5中的切点三角形并不是现成有的,而是添线构造出来的,难度稍大些,因此脑子中对切点三角形这些性质必须有深刻的印象,才能举一反三,触类旁通.
如图1,半径为r、R的⊙⊙外切,外公切线AB分别切⊙⊙于A、B,那么AB就是外公切线长。连,由切线性质知
可证得四边形ABCD为矩形,得
,
因此,,
而在RtΔ
性质(2) 外公切线长等于
7 两圆外切,经常添的辅助线是内公切线,因为内公切线可以产生两圆相等的弦切角,可将两圆的元素联系起来.
性质(3) 添内公切线是解决两圆外切问题的金钥匙.
例2 已知如图2, ⊙⊙外切于点C,PA切⊙于点A,交⊙于点P、D,直接PC交⊙于点B。
求证:AC平分∠BCD。
解:过C作⊙⊙的内公切线`MN交AP于M,所以∠MCD=∠P.
又PA切⊙于点A,
所以∠MAC=∠ACM,
所以∠ACB=∠P+∠MAC=∠MCD+∠MCA=∠DCA.
即AC平分∠BCD.
如图所示,抛物线与x轴交于A、B两点(点A在点B的左边),在第二象限内抛物线上的一点C,使△OCA∽△OBC,且AC:BC=:1,若直线AC交y轴于P。
(1)当C恰为AP中点时,求抛物线和直线AP的解析式;
(2)若点M在抛物线的对称轴上,⊙M与直线PA和y轴都相切,求点M的坐标。
如图所示,已知BC是半圆O的直径,△ABC内接于⊙O,以A为圆心,AB为半径作弧交⊙O于F,交BC于G,交OF于H,AD⊥BC于D,AD、BF交于E,CM切⊙O于C,交BF的延长线于M,若FH=6,,求FM的长。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com