0  310609  310617  310623  310627  310633  310635  310639  310645  310647  310653  310659  310663  310665  310669  310675  310677  310683  310687  310689  310693  310695  310699  310701  310703  310704  310705  310707  310708  310709  310711  310713  310717  310719  310723  310725  310729  310735  310737  310743  310747  310749  310753  310759  310765  310767  310773  310777  310779  310785  310789  310795  310803  447090 

1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。

试题详情

在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。通过对底数的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

试题详情

对数函数是高中引进的第二个初等函数,是本章的重点内容。学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=logax(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

试题详情

《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。

函数是高中数学的主体内容--变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

试题详情

5、对数函数及其性质(2)

试题详情

从教二十多年,每每设计函数的教学,始终存有困惑的感慨,同时也有遇旧如新的喜悦。函数始终是高中数学教学的主线,对数函数始终是高中数学的难点。高中新课改的春风,带来了函数教学设计上的创新,促使我们在学生学习方法上、教学内容的组织上、教学辅助手段上率先尝试,但这只是一个起点,目前教学条件还受到制约,如图形计算器未能普及、课时紧容量大,都影响函数的正常教学,通过这次活动希望能引起大家的广泛关注并深入探讨!

[参考文献]1。普通高中数学课程标准,人教社,2003

2.章建跃,数学课堂教学设计研究。数学通报,2006.7

宁德市霞浦县第六中学 郭星波

点评:

本文教学目标的设计定位准确,教学重点、难点明确。从两个实际问题引出对数函数的概念,让学生了解知识产生的背景,初步感受对数函数是刻画现实世界的一个重要数学模型。教学设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感性认识。同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效性。同时借助计算机辅助教学,增强学生的直观感受。

教给学生方法比教给学生知识更重要。本设计能在前一节刚学过指数函数的图象与性质的基础上,通过类比,以旧引新,自然过渡到本节的学习,用研究指数函数的图象与性质的方法来研究对数函数的图象与性质。在教学过程中,教师能引导学生确定探究问题、探究方向和探究步骤,确保了探究的有效性;让学生动手画图、观察图象,启发学生思考、实验、分析、归纳,注重探究的过程与方法。在这里,教师成为课堂教学的组织者与学生学习的促进者,而学生成为学习的主人,学会了学习,学到了 “对比联系”、“数形结合”及“分类讨论”的思想方法。

另外,教学情景的设置、教学例题的选用,以及信息技术来动态演示,都令人耳目一新,体现了教师的良好的素养及丰厚的学科功底。

试题详情

(六)作业布置、课后自评

1.必做题:教材P82习题2.2(A组) 第7、8、9、12题.

2.选做题:教材P83习题2.2(B组) 第2题.

3. 

试题详情

(五)归纳小结、巩固新知

1.议一议:(1)怎样的函数称为对数函数?

(2)对数函数的图象形状与底数有什么样的关系?

(3)对数函数有怎样的性质?

2.看一看:对数函数的图象特征和相关性质

对数函数的图象特征
对数函数的相关性质




函数图象都在y轴右侧
函数的定义域为(0,+∞)
图象关于原点和y轴不对称
非奇非偶函数
向y轴正负方向无限延伸
函数的值域为R
函数图象都过定点(1,0)
 
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0


第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0


试题详情

(四)探究问题、变式训练

 问题一:(幻灯)(教材p79 例8) 比较下列各组数中两个值的大小:

(1) log 23.4 , log 28.5    (2)log 0.31.8 , log 0.32.7

(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

    独立思考:1。构造怎样的对数函数模型?2。运用怎样的函数性质?

小组交流:(1)是增函数 (2)     是减函数      

(3)y = loga x,分 分类讨论

变式训练:1. 比较下列各题中两个值的大小:

⑴ log106    log108    ⑵ log0.56     log0.54       ⑶ log0.10.5     log0.10.6  ⑷ log1.50.6     log1.50.4

2.已知下列不等式,比较正数m,n 的大小:

      (1) log 3 m < log 3 n     (2) log 0.3 m > log 0.3 n

     (3) log a m < loga n  (0<a<1)  (4) log a m > log a n  (a>1)

问题二:(幻灯)(教材p79 例9)溶液酸碱度的测量。

    溶液酸碱度是通过pH刻画的。pH的计算公式为pH= -lg[  ],其中  [  ]表示溶液中氢离子的浓度,单位是摩尔/升。(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯静水中氢离子的浓度为[   ] = -   摩尔/升,计算纯静水的pH

独立思考:解决这个问题是选择怎样的对数函数模型?运用什么函数性质?

小组交流:pH=-lg[  ]=lg[   ]=lg1/[  ], 随着[  ]的增大,pH 减小,即溶液中氢离子浓度越大,溶液的酸碱度就越大

[设计意图:1。这个环节不做为本节课的重头戏,设置探究问题只是从另一层面上提升学生对性质的理解和应用。问题一是比较大小,始终要紧扣对数函数模型,渗透函数的观点(数形结合)解决问题的思想方法;2。旧教材在图象与性质之后,通常操练类似比较大小等技巧性过大的问题,而新教材引出问题二,还是强调“数学建模”的思想,并且关注学科间的联系,这种精神应予领会。当然要预计到,实际教学中学生理解这道应用题题意会遇到一些困难,教师要注意引导]

试题详情

(三)理性认识、发现性质

1.确定探究问题

   教师:当我们对对数函数的图象有了直观认识后,就可以进一步研究对数函数的性质,提高我们对对数函数的理性认识。同学们,通常研究函数的性质有哪些途径?

学生:主要研究函数的定义域、值域、单调性、对称性、过定点等性质。

教师:现在,请同学们依照研究函数性质的途径,再次联手合作,根据图象特征探究出对数函数的定义域、值域、单调性、对称性、过定点等性质

2.学生探究成果

    在学生自主探究、合作交流的的基础上填写如下表格:

函   数
y = loga x  (a>1)
y = loga x  (0<a<1)

 
 
图   像
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
定义域
R+
R+
值   域
R
R
单调性
在(0,+  )上是增函数
在(0,+  )上是减函数
过定点
(1,0)即x=1,y=0
(1,0)即x=1,y=0
 
取值范围
 
0<x<1时,y<0
  x>1时,y>0
0<x<1时,y>0
  x>1时,y<0

[设计意图:发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成]

试题详情


同步练习册答案