波速是介质对波的传播速度.介质能传播波是因为介质中各质点间有弹力的作用,弹力越大,相互对运动的反应越灵教,则对波的传播速度越大.通常情况下,固体对机械波的传摇速度校大,气体对机械波的传播速度较小.对纵波和横波,质点间的相互作用的性质有区别,那么同一物质对纵波和对横波的传播速度不相同.所以,介质对波的传播速度由介质决定,与振动频率无关.
波长是质点完成一次全振动所传播的距离,所以波长的长度与波速v和周期T有关.即波长由波源和介质共同决定.
由以上分析知,波从一种介质进入另一种介质,频率不会发生变化,速度和波长将发生改变.
②振源的振动在介质中由近及远传播,离振源较远些的质点的振动要滞后一些,这样各质点的振动虽然频率相同,但步调不一致,离振源越远越滞后.沿波的传播方向上,离波源一个波长的质点的振动要滞后一个周期,相距一个波长的两质点振动步调是一致的.反之,相距1/2个波长的两质点的振动步调是相反的.所以与波源相距波长的整数倍的质点与波源的振动同步(同相振动);与波源相距为1/2波长的奇数倍的质点与波源派的振动步调相反(反相振动.)
[例1]一简谐横波的波源的振动周期为1s,振幅为1crn,波速为1m/s,若振源质点从平衡位置开始振动,且从振源质点开始振动计时,当 t=0.5s时( )
A.距振源¼λ处的质点的位移处于最大值 B.距振源¼λ处的质点的速度处于最大值
C.距振源½λ处的质点的位移处于最大值 D.距振源½λ处的质点的速度处于最大值
解析:根据题意,在0.5s 内波传播的距离 Δx=vt=0.5m.即Δx=½λ.也就是说,振动刚好传播到½λ处,因此该处的质点刚要开始振动,速度和位移都是零,所以选项C、D都是不对的,振源的振动传播到距振源¼λ位置需要的时间为T/4=0。25s,所以在振源开始振动0.5 s后.¼λ处的质点,振动了0.25 s,即1/4个周期,此时该质点应处于最大位移处,速度为零. 答案:A
3.波速:单位时间内波向外传播的距离。v=s/t=λ/T=λf,波速的大小由介质决定。
2.周期与频率.波的频率由振源决定,在任何介质中传播波的频率不变。波从一种介质进入另一种介质时,唯一不变的是频率(或周期),波速与波长都发生变化.
1.波长λ:两个相邻的,在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波谷之间的距离.在纵波中两相邻的的密部(或疏部)中央间的距离,振动在一个周期内在介质中传播的距离等于波长
4.机械波的传播过程
(1)机械波传播的是振动形式和能量.质点只在各自的平衡位置附近做振动,并不随波迁移.后一质点的振动总是落后于带动它的前一质点的振动。
(2)介质中各质点的振动周期和频率都与波源的振动周期和频率相同.
(3)由波源向远处的各质点都依次重复波源的振动.
3、分类:①横波:质点的振动方向与波的传播方向垂直.凸起部分叫波峰,凹下部分叫波谷
②纵波:质点的振动方向与波的传播方向在一直线上.质点分布密的叫密部,疏的部分叫疏部,液体和气体不能传播横波。
2、产生条件:(1)有作机械振动的物体作为波源.(2)有能传播机械振动的介质.
1、定义:机械振动在介质中传播就形成机械波.
3、单摆的综合应用
[例7](1998年全国)图中两单摆摆长相同,平衡时两摆球刚好触.现将摆球A在两摆线所在平面向左拉开一小角度后释放,碰撞后,两球分开各自做简谐运动.以mA、mB分别表示摆球A、B的质量,则( )
A.如果mA>mB,下一次碰撞将发生在平衡位置右侧
B.如果mA<mB,下一次碰撞将发生在平衡位置左侧
C.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置右侧
D.无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置左侧
解析:由于两球线长相等,所以两球做单摆运动的周期必然相等.两球相碰后有这几种可能:①碰后两球速度方向相反,这样两球各自到达最高点再返回到平衡位置所用的时间相等,故两球只能在平衡位置相遇;②碰后两球向同一方向运动,则每个球都先到达最大位移处然后返回平衡位置,所用的时间也都是半个周期,两球仍只能在平衡位置相遇;③碰后一球静止,而另一球运动,则该球先到最大位移又返回到平衡位置,所用时间还是半个周期,在平衡位置相遇.
因此,不管mA>mB,还是mA<mB 还是mA=mB ,无论摆球质量之比为多少,下一次碰撞都只能发生在平衡位置,也就是说不可能发生在平衡位置的右侧或左侧,所以选项C、D正确.
拓展:两球的碰撞是否是弹性碰撞?
[例8]如图所示,两个完全相同的弹性小球1,2,分别挂在长L和L/4的细线上,重心在同一水平面上且小球恰好互相接触,把第一个小球向右拉开一个不大的距离后由静止释放,经过多长时间两球发生第10次碰撞?
解析:因将第1个小球拉开一个不大的距离,故摆动过程应符合单摆的周期公式有,
,系统振动周期为
,在同一个T内共发生两次碰撞,球1从最大位移处由静止释放后.经
发生10次碰撞,且第10次碰后球1又摆支最大位移处.
[例9]一单摆的摆长为L,摆球的质量为m,原来静止,在一个水平冲量I作用下开始摆动.此后,每当摆球经过平衡位置时,便给它一个与其速度方向一致的冲量I,求摆球经过多长时间后其摆线与竖直方向间的夹角可以达到α?(α≤50,不计阻力,所施冲量时间极短)
解析:设摆球经过平衡位置的次数为n,则摆球达最大偏角α时需用时间t=(n-l)十
…………①
由动量定理和机械能守恒定律得:nI=mv………② ½mv2=mgl(1-cosα)………③
单摆周期……… ④ 联立①-④式得:
[例10]如图所示,AB为半径R=7.50 m的光滑的圆弧形导轨,BC为长s=0.90m的光滑水平导轨,在B点与圆弧导轨相切,BC离地高度h=1.80 m,一质量m1=0.10 kg的小球置于边缘C点,另一质量m2=0. 20 kg的小球置于B点,现给小球m1一个瞬时冲量使它获得大小为0.90 m/s的水平向右速度,当m1运动到B时与m2发生弹性正碰,g取10 m/s2,求:
(1)两球落地的时间差Δt;
(2)两球落地点之间的距离Δs.
解析:(1 )m1与m2发生弹性正碰,则设碰后m1和m2速度分别为v1/和v2/,有
得v1=一0.3 m/s,v'2=0. 6 m/s
可见m1以0. 3 m/s速度反弹,从B到C,t=s/v1/=3s, m2以0. 6 m/s速度冲上圆弧轨道,可证明m2运动可近似为简谐运动,在圆弧上运动时间为
=2.72 s,再从B到C, t2 =s/v2/=1.5s则△t=t2+T/2一t1=1.22 s. (2)利用平抛运动知识不难求得△s=0.18 m.
[例11]如图所示,a、b、Co 质量相等的三个弹性小球(可视为质点),a、b分别悬挂在L1=1.0m,L2=0.25 m的轻质细线上,它们刚好与光滑水平面接触而不互相挤压,ab相距10cm。若c从a和b的连线中点处以v0=5 cm/s的速度向右运动,则c将与b和a反复碰撞而往复运动。
已知碰撞前后小球c均沿同一直线运动,碰撞时间极短,且碰撞过程中没有机械能损失,碰撞后a和b的摆动均可视为简谐振动。以c球开始运动作为时间零点,以向右为正方向,试在图中画也在l0s内C、b两球运动的位移-时间图像,两图像均以各自的初位置为坐标原点。(运算中可认为)
[答案]如图
[例12]有几个登山运动员登上一无名高峰,但不知此峰的高度,他们想迅速估测出高峰的海拔高度,但是他们只带了一些轻质绳子、小刀、小钢卷尺、可当作秒表用的手表和一些食品,附近还有石子、树木等,其中一个人根据物理知识很快就测出了海拔高度,请写出测量方法,需记录的数据,推导出计算高峰的海拔高度的计算式.
解析:用细线和小石块做一个单摆,量出摆线长L1,并测出单摆周期T1.设小石块重心到细线与小石块的连接处的距离为d,则改变摆线长为L2,测出周期T2,则
可得当地重力加速度为
又由
,得
[例13]在长方形桌面上放有:秒表、细绳、铁架台、天平、弹簧秤、钩码,怎样从中选取器材可较为准确地测出桌面面积S?并写出面积表达式.
[解析]用细绳量桌面长,并用此绳(包括到钩码重心)、钩码、铁架台做成单摆,由秒表测出其振动周期T1;同理量桌面宽,做单摆,测出周期T2.
答案:S=
试题展示
波的性质与波的图像
知识简析 一、机械波
2、摆钟问题
单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:
[例6]有一摆钟的摆长为ll时,在某一标准时间内快amin。若摆长为l2时,在同一标准时间内慢bmin。,求为使其准确,摆长应为多长?(可把钟摆视为摆角很小的单摆)。
[解析]设该标准时间为ts,准确摆钟摆长为lm,走时快的钟周期为T1s,走慢时的周期为T2s,准确的钟周期为T3。不管走时准确与否,钟摆每完成一次全振动,钟面上显示时间都是Ts。
(法一)由各摆钟在ts内钟面上显示的时间求解,
对快钟: t+60a=T; 对慢钟: t- 60a=
T
联立解,可得=
=
最后可得L=。
(法二)由各摆钟在ts内的振动次数关系求解:
设快钟的 t s内全振动次数为 nl,慢钟为 n2,准确的钟为n。显然,快钟比准确的钟多振动了60a/T次,慢钟比准确的钟少振动60b/T次,故:
对快钟:nl=t/T1=n+60a/T=t/T+60a/T
对慢钟:n2=t/T2=n-60b/T=t/T-60b/T
联解①②式,并利用单摆周期公式T=2同样可得L=
点窍:对走时不准的摆钟问题,解题时应抓住:由于摆钟的机械构造所决定,钟摆每完成一次全振动,摆钟所显示的时间为一定值,也就是走时准确的摆钟的周期T。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com