当且仅当时,取到最大值.
.
所以
由,解得,
解:(Ⅰ)解:设点的坐标为,点的坐标为,
(II)当|AB|=2,S=1时,求直线AB的方程.
81、(宁夏区银川一中2008届第六次月考)如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
,是椭圆上一点,且满足。
(1)求离心率e的取值范围
(2)当离心率e取得最小值时,点N( 0 , 3 )到椭圆上的点的最远距离为5
(i)求此时椭圆C的方程
(ii)设斜率为k(k¹0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,- )、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由。
解:(1)、由几何性质知的取值范围为:≤e<1………………3分
(2)、(i) 当离心率e取最小值时,椭圆方程可表示为+ = 1 。设H( x , y )是椭圆上的一点,则| NH |2 =x2+(y-3)2 = - (y+3)2+2b2+18 ,其中 - b≤y≤b
若0<b<3 ,则当y = - b时,| NH |2有最大值b2+6b+9 ,所以由b2+6b+9=50解得b = -3±5(均舍去) …………………5分
若b≥3,则当y = -3时,| NH |2有最大值2b2+18 ,所以由2b2+18=50解得b2=16
∴所求椭圆方程为+ = 1………………7分
(ii) 设 A( x1 , y1 ) ,B( x2 , y2 ),Q( x0 , y0 ),则由两式相减得x0+2ky0=0;………① ……………………8分
又直线PQ⊥直线l,∴直线PQ的方程为y= - x - ,将点Q( x0 , y0 )坐标代入得y0= - x0- ………② ……………………9分
由①②解得Q( - k , ),而点Q必在椭圆的内部
∴ + < 1,…………… 10分
由此得k2 < ,又k≠0
∴ - < k < 0或0 < k <
故当( - , 0 ) ∪( 0 , )时,A、B两点关于过点P、Q、的直线对称。…………12分
80、(江西省鹰潭市2008届高三第一次模拟)椭圆C:的两个焦点分别为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com