0  314500  314508  314514  314518  314524  314526  314530  314536  314538  314544  314550  314554  314556  314560  314566  314568  314574  314578  314580  314584  314586  314590  314592  314594  314595  314596  314598  314599  314600  314602  314604  314608  314610  314614  314616  314620  314626  314628  314634  314638  314640  314644  314650  314656  314658  314664  314668  314670  314676  314680  314686  314694  447090 

106.(08四川乐山28题)28.如图(18),在平面直角坐标系中,的边轴上,且,以为直径的圆过点.若点的坐标为,A、B两点的横坐标是关于的方程的两根.

(1)求的值;

(2)若平分线所在的直线轴于点,试求直线对应的一次函数解析式;

(3)过点任作一直线分别交射线(点除外)于点.则的是否为定值?若是,求出该定值;若不是,请说明理由.

(08四川乐山28题解析)28.解:(1)为直径的圆过点

,而点的坐标为

易知

,····································································································· 1分

即:,解之得:

.···································································································· 2分

由根与系数关系有:

解之.································································································ 4分

(2)如图(3),过点,交于点

易知,且

中,易得,··········· 5分

,有

,······································································································· 6分

,即,························································································ 7分

易求得直线对应的一次函数解析式为:.··················································· 8分

解法二:过

求得.········································································································ 5分

求得.····························································································· 7分

易求得直线对应的一次函数解析式为:.··················································· 8分

(3)过点

的平分线,

,有········································································· 9分

,有······································································ 10分

,··············································································· 11分

.···················································································· 12分

试题详情

105.(08湖南邵阳25题)25.如图(十七),将含角的直角三角板()绕其直角顶点逆时针旋转解(),得到相交于点,过点于点,连结.设的面积为的面积为

(1)求证:是直角三角形;

(2)试求用表示的函数关系式,并写出的取值范围;

(3)以点为圆心,为半径作

①当直线相切时,试探求之间的关系;

②当时,试判断直线的位置关系,并说明理由.

(08湖南邵阳25题解析)25. (1)

,································································· 1分

,···························································· 2分

,即是直角三角形;······························································ 3分

(2)在中,

;··············································································· 4分

;··························· 5分

(3)①直线相切时,则

,································································· 6分

是等边三角形,

;······································································ 7分

②当时,

则有,解之得;··················································· 8分

(i)当时,

中,

中,,········································· 9分

,即

直线相离;···························································································· 10分

(ii)当时,

同理可求出:,·············································· 11分

直线相交.···························································································· 12分

试题详情

104.(08贵州遵义27题)27。(14分)如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,

(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;

(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;

(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△ B1B2F与△ B1CF相似?

(08贵州遵义27题解析)解:(1) 四边形B2FD1E是矩形。

  因为△AB1D1平移到图(3)的,所以四边形B2FD1E是一个平行四边形,又因为在平行四边形ABCD中,AB=10,AD=6,BD=8,则有∠ADB是直角。所以四边形B2FD1E是矩形。

(2)因为三角形B1B2F与三角形AB1D1相似,则有B2F==0.6X,B1F==0.8x

所以sB2FD1E=B2F×D1F=0.6X × (8-0.8x)=4.8x-0.48x2

即y=4.8x-0.48x2=12-0.48(x-5)

当x=5时,y=12是最大的值。

(3)要使△ B1B2F与△ B1CF相似,则有  即

解之得:x=3.6

试题详情

103.(08云南省卷24题) 24.(本大题满分14分)如图12,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

  (1)求的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

(08云南省卷24题解析) (1) ∵ 点A(3,4)在直线y=x+m上,

∴ 4=3+m.                 ………………………………(1分)

∴ m=1.                  ………………………………(2分)

     设所求二次函数的关系式为y=a(x-1)2.    ………………………………(3分)

     ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,

     ∴ 4=a(3-1)2,

     ∴ a=1.                  ………………………………(4分)

∴ 所求二次函数的关系式为y=(x-1)2.

  即y=x2-2x+1.              ………………………………(5分)

(2) 设P、E两点的纵坐标分别为yP和yE .

∴ PE=h=yP-yE               ………………………………(6分)

    =(x+1)-(x2-2x+1)           ………………………………(7分)

    =-x2+3x.               ………………………………(8分)

  即h=-x2+3x (0<x<3).          ………………………………(9分)

(3) 存在.                  ………………………………(10分)

解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)

∵ 点D在直线y=x+1上,

∴ 点D的坐标为(1,2),

∴ -x2+3x=2 .

即x2-3x+2=0 .               ………………………………(12分)

解之,得  x1=2,x2=1 (不合题意,舍去)   ………………………………(13分)

∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形.   ……………(14分)

解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.  ………………(11分)

设直线CE的函数关系式为y=x+b.

∵ 直线CE 经过点C(1,0),

∴ 0=1+b,

∴ b=-1 .

∴ 直线CE的函数关系式为y=x-1 .

  得x2-3x+2=0.     ………………………………(12分)

解之,得  x1=2,x2=1 (不合题意,舍去)  ………………………………(13分)

∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形.  ……………(14分)

试题详情

102.(08新疆乌鲁木齐23题)23.如图9,在平面直角坐标系中,以点为圆心,2为半径作圆,交轴于两点,开口向下的抛物线经过点,且其顶点上.

(1)求的大小;

(2)写出两点的坐标;

(3)试确定此抛物线的解析式;

(4)在该抛物线上是否存在一点,使线段互相平分?若存在,求出点的坐标;若不存在,请说明理由.

(08新疆乌鲁木齐23题解答)23.解:(1)作轴,为垂足,

,半径······················································ 1分

······································ 3分

(2),半径

,故,············································ 5分

········································································· 6分

(3)由圆与抛物线的对称性可知抛物线的顶点的坐标为··································· 7分

设抛物线解析式·················································································· 8分

把点代入上式,解得······································································· 9分

····································································································· 10分

(4)假设存在点使线段互相平分,则四边形是平行四边形········· 11分

轴,轴上.·············································································· 12分

,即

满足

在抛物线上······································································································ 13分

所以存在使线段互相平分.···························································· 14分

试题详情

101.(08四川南充21题)21.如图,已知平面直角坐标系中,有一矩形纸片为坐标原点,轴,,现将纸片按如图折叠,为折痕,.折叠后,点落在点,点落在线段上的处,并且在同一直线上.

(1)求的坐标;

(2)求经过三点的抛物线的解析式;

(3)若的半径为,圆心在(2)的抛物线上运动,

与两坐标轴都相切时,求半径的值.

(08四川南充21题解答)21.解:(1)过轴于点,如图(第21题图)

中,

································· 1分

由对称性可知:

············································································ 2分

的坐标为····························································································· 3分

(2)设经过的抛物线的解析式为,则

································································································· 4分

解之得

抛物线的解析式为:································································· 5分

(3)与两坐标轴相切

圆心应在第一、三象限或第二、四象限的角平分线上.

即在直线上·························································································· 6分

若点在直线上,根据题意有

解之得

····································································································· 7分

若点在直线上,根据题意有

解之得

的半径.······································································ 8分

试题详情

96.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.

例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).

请你用上面的思想和方法对下面关于圆的问题进行研究:

(1) 如图1,在圆O所在平面上,放置一条直线(和圆O分别交于点AB),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?

(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心两条直线(与圆O分别交于点AB与圆O分别交于点CD).

请你根据所构造的图形提出一个结论,并证明之.

(3) 如图3,其中AB是圆O的直径,AC是弦,D的中点,弦DEAB于点F. 请找出点C和点E重合的条件,并说明理由.

 

(08广东佛山25题解答)解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等.  (写对一个给1分,写对两个给2分)

(2) 情形1  如图21,AB为弦,CD为垂直于弦AB的直径.  …………………………3分

结论:(垂径定理的结论之一).  …………………………………………………………4分

证明:略(对照课本的证明过程给分).  …………………………………………………7分

情形2  如图22,AB为弦,CD为弦,且ABCD在圆内相交于点P.

结论:.

证明:略.

情形3 (图略)AB为弦,CD为弦,且在圆外相交于点P.

结论:.

证明:略.

情形4  如图23,AB为弦,CD为弦,且ABCD.

结论:  =   .

证明:略.

(上面四种情形中做一个即可,图1分,结论1分,证明3分;

其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)

(3) 若点C和点E重合,

则由圆的对称性,知点C和点D关于直径AB对称. …………………………………8分

,则.………………………………9分

D是   的中点,所以

.………………………………………………………10分

解得.……………………………………………………………11分

(若求得等也可,评分可参照上面的标准;也可以先直觉猜测点BC是圆的十二等分点,然后说明)

 

试题详情

95.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

 

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

(08山东聊城25题解答)(本题满分12分)

解:(1)设正方形的边长为cm,则

.························································································ 1分

解得(不合题意,舍去),

剪去的正方形的边长为1cm.·············································································· 3分

(注:通过观察、验证直接写出正确结果给3分)

(2)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2

的函数关系式为:

.······························································································· 5分

改写为

时,

即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.········ 7分

(3)有侧面积最大的情况.

设正方形的边长为cm,盒子的侧面积为cm2

若按图1所示的方法剪折,则的函数关系式为:

时,.····························· 9分

若按图2所示的方法剪折,则的函数关系式为:

时,.················································································· 11分

比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2

说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.

试题详情

94.(08广东梅州23题)23.本题满分11分.

如图11所示,在梯形ABCD中,已知ABCDADDBAD=DC=CBAB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.

(1)求∠DAB的度数及ADC三点的坐标;

(2)求过ADC三点的抛物线的解析式及其对称轴L

(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

(08广东梅州23题解答)解: (1) DCABAD=DC=CB

 ∠CDB=∠CBD=∠DBA,················································································ 0.5分

   ∠DAB=∠CBADAB=2∠DBA, ············· 1分

DAB+∠DBA=90DAB=60, ··········· 1.5分

  ∠DBA=30AB=4, DC=AD=2,  ·········· 2分

RtAODOA=1,OD=,··························· 2.5分

A(-1,0),D(0, ),C(2, ).  · 4分

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),

故可设所求为  = (+1)( -3) ······························································ 6分

将点D(0, )的坐标代入上式得, =

所求抛物线的解析式为  =   ·········································· 7分

其对称轴L为直线=1.······················································································ 8分

(3) PDB为等腰三角形,有以下三种情况:

①因直线LDB不平行,DB的垂直平分线与L仅有一个交点P1P1D=P1B

P1DB为等腰三角形;  ·················································································· 9分

②因为以D为圆心,DB为半径的圆与直线L有两个交点P2P3DB=DP2DB=DP3P2DBP3DB为等腰三角形;

③与②同理,L上也有两个点P4P5,使得 BD=BP4BD=BP5.  ······················ 10分

由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.

试题详情

93.(08福建南平26题)26.(14分)

(1)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点

①如图1,求证:

②探究:如图1,    

如图2,    

如图3,    

(2)如图4,已知:是以为边向外所作正边形的一组邻边;是以为边向外所作正边形的一组邻边.的延长相交于点

①猜想:如图4,     (用含的式子表示);

②根据图4证明你的猜想.

(08福建南平26题解答)(1)①证法一:均为等边三角形,

························································································ 2分

··············································· 3分

························································ 4分

.··················································· 5分

证法二:均为等边三角形,

························································································ 2分

························································································ 3分

可由绕着点按顺时针方向旋转得到··································· 4分

.··························································································· 5分

.········································································ 8分(每空1分)

(2)①········································································································ 10分

②证法一:依题意,知都是正边形的内角,

,即.····························· 11分

.·························································································· 12分

······ 13分

········································ 14分

证法二:同上可证  .··························································· 12分

,如图,延长

································ 13分

················· 14分

证法三:同上可证  .··························································· 12分

························································ 13分

········································································ 14分

证法四:同上可证  .··························································· 12分

.如图,连接

.···································· 13分

······························· 14分

注意:此题还有其它证法,可相应评分.

试题详情


同步练习册答案