106.(08四川乐山28题)28.如图(18),在平面直角坐标系中,的边在轴上,且,以为直径的圆过点.若点的坐标为,,A、B两点的横坐标,是关于的方程的两根.
(1)求、的值;
(2)若平分线所在的直线交轴于点,试求直线对应的一次函数解析式;
(3)过点任作一直线分别交射线、(点除外)于点、.则的是否为定值?若是,求出该定值;若不是,请说明理由.
(08四川乐山28题解析)28.解:(1)以为直径的圆过点,
,而点的坐标为,
由易知,
,····································································································· 1分
即:,解之得:或.
,,
即.···································································································· 2分
由根与系数关系有:
,
解之,.································································································ 4分
(2)如图(3),过点作,交于点,
易知,且,
在中,易得,··········· 5分
,
,
又,有,
,······································································································· 6分
,
则,即,························································································ 7分
易求得直线对应的一次函数解析式为:.··················································· 8分
解法二:过作于,于,
由,
求得.········································································································ 5分
又,
求得.····························································································· 7分
即,
易求得直线对应的一次函数解析式为:.··················································· 8分
(3)过点作于,于.
为的平分线,.
由,有········································································· 9分
由,有······································································ 10分
,··············································································· 11分
即.···················································································· 12分
105.(08湖南邵阳25题)25.如图(十七),将含角的直角三角板()绕其直角顶点逆时针旋转解(),得到,与相交于点,过点作交于点,连结.设,的面积为,的面积为.
(1)求证:是直角三角形;
(2)试求用表示的函数关系式,并写出的取值范围;
(3)以点为圆心,为半径作,
①当直线与相切时,试探求与之间的关系;
②当时,试判断直线与的位置关系,并说明理由.
(08湖南邵阳25题解析)25. (1),
又,································································· 1分
又,···························································· 2分
,
,即是直角三角形;······························································ 3分
(2)在中,,
,
,,
;··············································································· 4分
;··························· 5分
(3)①直线与相切时,则.
,
.
,································································· 6分
又,
是等边三角形,,
,
又;······································································ 7分
②当时,
则有,解之得或;··················································· 8分
(i)当时,,
在中,,,
在中,,········································· 9分
,即,
直线与相离;···························································································· 10分
(ii)当时,
同理可求出:,·············································· 11分
,
直线与相交.···························································································· 12分
104.(08贵州遵义27题)27。(14分)如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△ B1B2F与△ B1CF相似?
(08贵州遵义27题解析)解:(1) 四边形B2FD1E是矩形。
因为△AB1D1平移到图(3)的,所以四边形B2FD1E是一个平行四边形,又因为在平行四边形ABCD中,AB=10,AD=6,BD=8,则有∠ADB是直角。所以四边形B2FD1E是矩形。
(2)因为三角形B1B2F与三角形AB1D1相似,则有B2F==0.6X,B1F==0.8x
所以sB2FD1E=B2F×D1F=0.6X × (8-0.8x)=4.8x-0.48x2
即y=4.8x-0.48x2=12-0.48(x-5)
当x=5时,y=12是最大的值。
(3)要使△ B1B2F与△ B1CF相似,则有 即
解之得:x=3.6
103.(08云南省卷24题) 24.(本大题满分14分)如图12,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.
(1)求的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(08云南省卷24题解析) (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP∥CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴ 得x2-3x+2=0. ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
102.(08新疆乌鲁木齐23题)23.如图9,在平面直角坐标系中,以点为圆心,2为半径作圆,交轴于两点,开口向下的抛物线经过点,且其顶点在上.
(1)求的大小;
(2)写出两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点,使线段与互相平分?若存在,求出点的坐标;若不存在,请说明理由.
(08新疆乌鲁木齐23题解答)23.解:(1)作轴,为垂足,
,半径······················································ 1分
,······································ 3分
(2),半径
,故,············································ 5分
········································································· 6分
(3)由圆与抛物线的对称性可知抛物线的顶点的坐标为··································· 7分
设抛物线解析式·················································································· 8分
把点代入上式,解得······································································· 9分
····································································································· 10分
(4)假设存在点使线段与互相平分,则四边形是平行四边形········· 11分
且.
轴,点在轴上.·············································································· 12分
又,,即.
又满足,
点在抛物线上······································································································ 13分
所以存在使线段与互相平分.···························································· 14分
101.(08四川南充21题)21.如图,已知平面直角坐标系中,有一矩形纸片,为坐标原点,轴,,现将纸片按如图折叠,为折痕,.折叠后,点落在点,点落在线段上的处,并且与在同一直线上.
(1)求的坐标;
(2)求经过三点的抛物线的解析式;
(3)若的半径为,圆心在(2)的抛物线上运动,
与两坐标轴都相切时,求半径的值.
(08四川南充21题解答)21.解:(1)过作轴于点,如图(第21题图)
在中,,
································· 1分
由对称性可知:
············································································ 2分
点的坐标为····························································································· 3分
(2)设经过的抛物线的解析式为,则
································································································· 4分
解之得
抛物线的解析式为:································································· 5分
(3)与两坐标轴相切
圆心应在第一、三象限或第二、四象限的角平分线上.
即在直线或上·························································································· 6分
若点在直线上,根据题意有
解之得
,
····································································································· 7分
若点在直线上,根据题意有
解之得,
的半径为或.······································································ 8分
96.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1) 如图1,在圆O所在平面上,放置一条直线(和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?
(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线和(与圆O分别交于点A、B,与圆O分别交于点C、D).
请你根据所构造的图形提出一个结论,并证明之.
(3) 如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.
(08广东佛山25题解答)解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分)
(2) 情形1 如图21,AB为弦,CD为垂直于弦AB的直径. …………………………3分
结论:(垂径定理的结论之一). …………………………………………………………4分
证明:略(对照课本的证明过程给分). …………………………………………………7分
情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交于点P.
结论:.
证明:略.
情形3 (图略)AB为弦,CD为弦,且与在圆外相交于点P.
结论:.
证明:略.
情形4 如图23,AB为弦,CD为弦,且AB∥CD.
结论: = .
证明:略.
(上面四种情形中做一个即可,图1分,结论1分,证明3分;
其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)
(3) 若点C和点E重合,
则由圆的对称性,知点C和点D关于直径AB对称. …………………………………8分
设,则,.………………………………9分
又D是 的中点,所以,
即.………………………………………………………10分
解得.……………………………………………………………11分
(若求得或等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明)
95.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
(08山东聊城25题解答)(本题满分12分)
解:(1)设正方形的边长为cm,则
.························································································ 1分
即.
解得(不合题意,舍去),.
剪去的正方形的边长为1cm.·············································································· 3分
(注:通过观察、验证直接写出正确结果给3分)
(2)有侧面积最大的情况.
设正方形的边长为cm,盒子的侧面积为cm2,
则与的函数关系式为:
.
即.······························································································· 5分
改写为.
当时,.
即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.········ 7分
(3)有侧面积最大的情况.
设正方形的边长为cm,盒子的侧面积为cm2.
若按图1所示的方法剪折,则与的函数关系式为:
.
即.
当时,.····························· 9分
若按图2所示的方法剪折,则与的函数关系式为:
.
即.
当时,.················································································· 11分
比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.
说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.
94.(08广东梅州23题)23.本题满分11分.
如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
(08广东梅州23题解答)解: (1) DC∥AB,AD=DC=CB,
∠CDB=∠CBD=∠DBA,················································································ 0.5分
∠DAB=∠CBA, ∠DAB=2∠DBA, ············· 1分
∠DAB+∠DBA=90, ∠DAB=60, ··········· 1.5分
∠DBA=30,AB=4, DC=AD=2, ·········· 2分
RtAOD,OA=1,OD=,··························· 2.5分
A(-1,0),D(0, ),C(2, ). · 4分
(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),
故可设所求为 = (+1)( -3) ······························································ 6分
将点D(0, )的坐标代入上式得, =.
所求抛物线的解析式为 = ·········································· 7分
其对称轴L为直线=1.······················································································ 8分
(3) PDB为等腰三角形,有以下三种情况:
①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B,
P1DB为等腰三角形; ·················································································· 9分
②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3, P2DB, P3DB为等腰三角形;
③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. ······················ 10分
由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.
93.(08福建南平26题)26.(14分)
(1)如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点.
①如图1,求证:;
②探究:如图1, ;
如图2, ;
如图3, .
(2)如图4,已知:是以为边向外所作正边形的一组邻边;是以为边向外所作正边形的一组邻边.的延长相交于点.
①猜想:如图4, (用含的式子表示);
②根据图4证明你的猜想.
(08福建南平26题解答)(1)①证法一:与均为等边三角形,
,························································································ 2分
且··············································· 3分
,
即························································ 4分
.··················································· 5分
证法二:与均为等边三角形,
,························································································ 2分
且························································································ 3分
可由绕着点按顺时针方向旋转得到··································· 4分
.··························································································· 5分
②,,.········································································ 8分(每空1分)
(2)①········································································································ 10分
②证法一:依题意,知和都是正边形的内角,,,
,即.····························· 11分
.·························································································· 12分
,,······ 13分
,
········································ 14分
证法二:同上可证 .··························································· 12分
,如图,延长交于,
,
································ 13分
················· 14分
证法三:同上可证 .··························································· 12分
.
,
························································ 13分
即········································································ 14分
证法四:同上可证 .··························································· 12分
.如图,连接,
.···································· 13分
即······························· 14分
注意:此题还有其它证法,可相应评分.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com