2、 要进行自变量与因变量之间的变化图像识别的训练,真正理解图像与变量的关系。
1、 理解函数的概念和平面直角坐标系中某些点的坐标特点。
5、熟练进行分式的加、减、乘、除、乘方的运算和应用。
中考整式的有关知识及 整式的四则运算仍然会 以填空 、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题 中去进行考查 数与似的应用题 将是今后中考的一个热点。分式 的概念及 性质,运算仍是考查 的重点。特别注意 分式的应用题 ,即要 熟悉背景 材料,又要从实际问题中抽象出数学模型。
应试对策
掌握整式 的有关概念及 运算法则,在运算过程中注意 运算顺序,掌握运算规律,掌握乘法 公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。要掌握并灵活运用分式的基本性质,在通分和约分 时 都要注意分解因式知识的应用。化解 求殖题,一要注意 整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。
例题精讲
例1.下列各式计算正确的是( ).
(A)(a5)2=a7 (B)2x-2= (c)4a3·2a2=8a6 (D)a8÷a2=a6
分析:考查学生对幂的运算性质及同类项法则的掌握情况。
答案:D
例2.把式子x2-y2-x-y分解因式的结果是 ..
分析:考查运用提公因式法进行分解因式。
答案:(x+y)(x-y-1)
例3.分解因式:a2-4a+4=
分析:考查运用公式法分解因式
答案:(a-2)2
例4.计算:9xy·(-x2y)= ;分解因式:2x(a-2)+3y(2-a)=
分析:考查整式的运算及提取公因式法分解因式
答案:-3x3y2,(a-2)(2x-3y)
例5:化简()÷的结果是 .
分析:考查分式的混合运算,根据分式的性质和运算法则。
答案:-
例6、下列各式中,运算正确的是 ( )
A.a2a3=a6 B.(-a+2b)2=(a-2b)2
c.(a+b≠O) D.
分析:考查学生对幂的运算性质
答案:B
例7.对于整数a,b,c,d,符号表示运算ac-bd,已知1<<3,则b+d的值是 .
分析:考查求代数式的值。
答案:.3或-3
例8.已知a=,求的值.
分析:考查分式的四则运算,根据分式的性质和运算法则,分解因式进行化简。
答案:a=2-<1,
原式=a-1+=3.
例9.已知|a-4|+ =0,计算的值
答案:由条件,得a-4=0且b-9=0 ∴a=4 b=9
原式=a2/b2
当a=4,6=9时,原式=16/81
例10.计算(x-y+)(x+y-)的正确结果是( )
A y2-x2 B.x2-y2 c.x2-4y2 D.4x2-y2
分析:考查分式的通分及四则运算。
答案:B
4、了解分式的有关概念式的基本性质;
3、熟练运用提公因式法及公式法进行分解因式 ;
2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;
1、 掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;
3、理解是的视点、视角及盲区在简单的平面图和立体图中表示。
中考视图与投影仍将是考查的重点内容,尤其视图与投影与实际生活有关系的应用问题。
应试对策
要正确判断简单几何体三视图,正确画出基本几何体的三视图。根据实例掌握中心投影与平行投影的有关性质,根据实际问题画出视线、盲区。
例题精讲
例1.平行投影中的光线是 ( )
A 平行的 B 聚成一点的 C 不平行的 D 向四面八方发散的
答案:A
例2.在同一时刻,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是
( )
A 两根都垂直于地面 B 两根平行斜插在地上 C 两根竿子不平行 D 一根到在地上
答案:C
例3.有一实物如图,那么它的主视图 ( )
A B C D
答案:A
例4、将一圆形纸片对折后再对折,得到如图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是 ( )
答案:C
例5.一电动玩具的正面是由半径为1Ocm的小圆盘和半径为20 cm的大圆盘依右图方式连接而成的.小圆盘在大圆盘的圆周上外切滚动一周且不发生滑动(大圆盘不动),回到原来的位置,在这一过程中,判断虚线所示位置的三个圆内,所画的头发、眼睛、嘴巴位置正确的是(不妨动手试一试!) ( )
答案:B
例6.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.,)
解:过点C作CE⊥BD于E,(作辅助线1分)
∵AB = 米
∴CE = 米
∵阳光入射角为
∴∠DCE =
在Rt⊿DCE中
∴
∴,而AC = BE = 1米
∴DB = BE + ED =米
答:新建楼房最高约米。
2、理解中心投影和平行投影的性质;
1、掌握基本几何图与其三视图、展开图之间的关系。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com