0  317938  317946  317952  317956  317962  317964  317968  317974  317976  317982  317988  317992  317994  317998  318004  318006  318012  318016  318018  318022  318024  318028  318030  318032  318033  318034  318036  318037  318038  318040  318042  318046  318048  318052  318054  318058  318064  318066  318072  318076  318078  318082  318088  318094  318096  318102  318106  318108  318114  318118  318124  318132  447090 

3、关于理想:理想的含义与分类-—> 崇高的理想对人生、对社会有着重大的指导和促进作用-—> 最高理想和共同理想的辩证关系-—> 理想与现实的关系;

试题详情

2、关于人生观:个人活动与社会发展的关系-—> 人生的真正价值-—> 人生价值实现的条件-—> 反对拜金主义和享乐主义;

试题详情

价值观、人生观部分,教材知识相对零碎,复习时要注意理情教材,突出重点,把握难点,构建好知识体系。

1、关于价值观:社会存在与社会意识辩证关系-—>价值观导向作用-—>正确价值观-—>集体主义价值观-—>社会主义市场经济与集体主义-—>反对极端个人主义和小团体主义;

试题详情

20、求角的方法:先确定角的范围,再求出关于此角的某一个三角函数(要注意选择,其标准有二:一是此三角函数在角的范围内具有单调性;二是根据条件易求出此三角函数值)。如(1)若,且是方程的两根,则求的值______(答:);(2)中,,则=_______(答:);(3)若,求的值(答:).

试题详情

19.反三角函数:(1)反三角函数的定义(以反正弦函数为例):表示一个角,这个角的正弦值为,且这个角在。(2)反正弦、反余弦、反正切的取值范围分别是.

在用反三角表示两异面直线所成的角、直线与平面所成的角、二面角的平面角、直线的倾斜角、的角、的夹角以及两向量的夹角时,你是否注意到了它们的范围?

试题详情

18. 三角形中的有关公式:

(1)内角和定理:三角形三角和为,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.

(2)正弦定理:(R为三角形外接圆的半径).注意:①正弦定理的一些变式:

;②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.

(3)余弦定理:等,常选用余弦定理鉴定三角形的形状.

 (4)面积公式:(其中为三角形内切圆半径).如中,若,判断的形状(答:直角三角形)。

特别提醒:(1)求解三角形中的问题时,一定要注意这个特殊性:;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。如(1)中,A、B的对边分别是,且,那么满足条件的  A、 有一个解  B、有两个解  C、无解   D、不能确定(答:C);(2)在中,A>B是成立的_____条件(答:充要);(3)在中, ,则=_____(答:);(4)在中,分别是角A、B、C所对的边,若,则=____(答:);(5)在中,若其面积,则=____(答:);(6)在中,,这个三角形的面积为,则外接圆的直径是_______(答:);(7)在△ABC中,a、b、c是角A、B、C的对边,=  的最大值为       (答:);(8)在△ABC中AB=1,BC=2,则角C的取值范围是   (答:);(9)设O是锐角三角形ABC的外心,若,且的面积满足关系式,求(答:).

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

试题详情

17、正切函数的图象和性质:

(1)定义域:。遇到有关正切函数问题时,你注意到正切函数的定义域了吗?

(2)值域是R,在上面定义域上无最大值也无最小值;

(3)周期性:是周期函数且周期是,它与直线的两个相邻交点之间的距离是一个周期。绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定。 如的周期都是, 但

的周期为,而的周期不变;

(4)奇偶性与对称性:是奇函数,对称中心是,特别提醒:正(余)切型函数的对称中心有两类:一类是图象与轴的交点,另一类是渐近线与轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处。

(5)单调性:正切函数在开区间内都是增函数。但要注意在整个定义域上不具有单调性。如下图:

 

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

试题详情

16、形如的函数:

(1)几个物理量:A―振幅;―频率(周期的倒数);―相位;―初相;

(2)函数表达式的确定:A由最值确定;由周期确定;由图象上的特殊点确定,如的图象如图所示,则=_____(答:);

(3)函数图象的画法:①“五点法”――设,令=0,求出相应的值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。

(4)函数的图象与图象间的关系:①函数的图象纵坐标不变,横坐标向左(>0)或向右(<0)平移个单位得的图象;②函数图象的纵坐标不变,横坐标变为原来的,得到函数的图象;③函数图象的横坐标不变,纵坐标变为原来的A倍,得到函数的图象;④函数图象的横坐标不变,纵坐标向上()或向下(),得到的图象。要特别注意,若由得到的图象,则向左或向右平移应平移个单位,如(1)函数的图象经过怎样的变换才能得到的图象?(答:向上平移1个单位得的图象,再向左平移个单位得的图象,横坐标扩大到原来的2倍得的图象,最后将纵坐标缩小到原来的即得的图象);(2) 要得到函数的图象,只需把函数的图象向___平移____个单位(答:左;);(3)将函数图像,按向量平移后得到的函数图像关于原点对称,这样的向量是否唯一?若唯一,求出;若不唯一,求出模最小的向量(答:存在但不唯一,模最小的向量);(4)若函数的图象与直线有且仅有四个不同的交点,则的取值范围是               (答:)

(5)研究函数性质的方法:类比于研究的性质,只需将中的看成中的,但在求的单调区间时,要特别注意A和的符号,通过诱导公式先将化正。如(1)函数的递减区间是______(答:);(2)的递减区间是_______(答:);(3)设函数的图象关于直线对称,它的周期是,则A、 B、在区间上是减函数 C、 D、的最大值是A(答:C);(4)对于函数给出下列结论:①图象关于原点成中心对称;②图象关于直线成轴对称;③图象可由函数的图像向左平移个单位得到;④图像向左平移个单位,即得到函数的图像。其中正确结论是_______(答:②④);(5)已知函数图象与直线的交点中,距离最近两点间的距离为,那么此函数的周期是_______(答:)

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

试题详情

15、正弦函数、余弦函数的性质:

(1)定义域:都是R。

(2)值域:都是,对,当时,取最大值1;当时,取最小值-1;对,当时,取最大值1,当时,取最小值-1。如(1)若函数的最大值为,最小值为,则__,_(答:);(2)函数()的值域是____(答:[-1, 2]);(3)若,则的最大值和最小值分别是____ 、_____(答:7;-5);(4)函数的最小值是_____,此时=__________(答:2;);(5)己知,求的变化范围(答:);(6)若,求的最大、最小值(答:)。特别提醒:在解含有正余弦函数的问题时,你深入挖掘正余弦函数的有界性了吗?

(3)周期性:①的最小正周期都是2;②的最小正周期都是。如(1)若,则=___(答:0);(2) 函数

的最小正周期为____(答:);(3) 设函数,若对任意都有成立,则的最小值为____(答:2)

(4)奇偶性与对称性:正弦函数是奇函数,对称中心是,对称轴是直线;余弦函数是偶函数,对称中心是,对称轴是直线(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴的交点)。如(1)函数的奇偶性是______(答:偶函数);(2)已知函数为常数),且,则______(答:-5);(3)函数的图象的对称中心和对称轴分别是__________、____________(答:);(4)已知为偶函数,求的值。(答:)

(5)单调性:上单调递增,在单调递减;上单调递减,在上单调递增。特别提醒,别忘了

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

试题详情

14、正弦函数和余弦函数的图象:正弦函数和余弦函数图象的作图方法:五点法:先取横坐标分别为0,的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。

试题详情


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹