0  317950  317958  317964  317968  317974  317976  317980  317986  317988  317994  318000  318004  318006  318010  318016  318018  318024  318028  318030  318034  318036  318040  318042  318044  318045  318046  318048  318049  318050  318052  318054  318058  318060  318064  318066  318070  318076  318078  318084  318088  318090  318094  318100  318106  318108  318114  318118  318120  318126  318130  318136  318144  447090 

2.解析:由于电荷两次都是从电场外移入电场的,故选电场外电势为零解题方便。

   可得

    

A、  B两点间电势差:UAB=UAUB=6×102(2×103)=2.6×103V

当电荷由A移到B时电场力做功:

试题详情

1.解析:P、Q在O点的合场强为零,沿着Oab线到无穷远处,P、Q的合场强也为零,可见沿Oab线远离O点时,合场强是先增大后减小,故不一定大于,而电势离电荷越远越低,必有大于,所以B选项正确。

试题详情

15.如图24所示,倾角为300的直角三角形底边长为2l,底边外在水平位置,斜边为光滑绝缘导轨,现在底边中点O处固定一正电荷Q,让一个质量为m的带正电荷q从斜面顶端A沿斜面滑下(始终不脱离斜面),已测得它滑到仍在斜边上的垂足D处的速度为v,加速度为a,方向沿斜面向下,问该质点滑到斜边底端C点时的速度和加速度各为多少? 

 
 
 
 
 
 图24

专题三  电场和磁场

典型例题

[例1]  解析:A点拨:电场线从+Q发出,到接地的很大的薄金属板,并与金属板垂直。根据电场线可判断①正确,M点的电场是+Q的电场与金属板的感应电荷的电场的叠加,故②错误;N点与金属板接地,所以电势为零,但电场强度不为零,故③正确,④错误。

[例2] 解析:对A进行受力分析,设悬线的拉力为T,水平线的拉力为,在竖直方向上受重力和悬线的拉力而平衡:      ①

在水平方向上,小球受电场力、电荷间的为库仑力、悬线的水平拉力和水平线的拉力而平衡:     ②

要两球处于题设条件的平衡状态,则对水平线的受力要求为:

             ③

   联解①②③得到:

[例3] 解析:电子经U1加速后,设以的速度垂直进入偏转电场,由动能定理得:       ①

电子在偏转电场中运动的时间为:         ②

电子在偏转电场中的加速度为:         ③

电子在偏转电场中的偏转量为:         ④

由以上四式联解得到示波管的灵敏度为:

可见增大、减小U1或d均可提高示波管的灵敏度。

[例4]解析:由于电容器与电源相连,则电容器两极板的电压不变,根据平行板电容器电容可知,当增大S不变时,电容C减小;又因可得,电荷量减小;又由可知,场强E减小,故A选项正确;当S增大,不变时,C增大,Q增大,E不变,所以B选项错误;当减小,S增大时,C增大,Q增大,E增大,所以C选项正确;当S减小,减小时,电容C不一定增大,Q也不一定增大,但E一定增大,所以D选项错误。可见本题AC选项正确。

[例5] 解析:如图所示,电场对粒子加速,由动能定理得:

        ①

由于粒子在电场加速过程中做匀加速直线运动,则加速的时间为:

        ②

粒子在偏转电场中做类似平抛运动,其加速度为:

  粒子通过偏转电场的时间为:       ③

粒子在偏转电场中的侧移距离为:    ④

侧向速度为: 

则粒子射出偏转电场时的速度为:   ⑤

以速度进入磁场做匀速度圆周运动的洛仑兹力为向心力,设运动半径为R:

          ⑥

则磁场宽度为:

     ⑦

粒子在磁场中做匀速圆周运动的周期为:

  所以

所以粒子在磁场中运动的时间为:

            ⑧

粒子从S出发到回到S的周期T为:

   偏转电压正负极换向时间为:

  

[例6]  解析:正离子每次经过缝隙时都能得到加速必须满足在筒中飞行时间

  所以第一个筒长度

  进入第二个筒时速度为v2,则  

第二个筒长

进入第三个筒的速度为v3,则  

第三个筒长

进入第n个筒的速度vn满足    

n个筒的长度为,  解以上各式得:

 

由动能定理得:  

   

[例7] 解析:设带电粒子带电为,根据题目条件可知,要使粒子平衡,则下极板带正电,上极板带负电,且有:         ①

 当电场由E1变到E2,但方向不变,时,有,粒子在E2的方向上做匀加速度直线运动,粒子从A运动到B,设加速所用时间为,此时E2反向,设粒子的速度为,此后粒子向上做加速度为减速度运动,直到速度为零,到达B点;此后粒子在电场力和重力作用下向下做初速度为零的匀加速直线运动,加速度大小为,回到出发点A。设粒子从B到A的时间为

              ②

粒子从B点经C点回到A点,有:      ③

由于         ④

    所以有:          ⑤

由题意可知:    ⑥     联解得:

即:   得到:

[例8] 分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图所示.可利用运动合成和分解的方法去求解.

解析:因为

   电场力为:

则有:

所以得到: v=10m/s

所以θ=37°

因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解。设沿初速度方向的位移为,沿合力方向的位移为,则

因为      

所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.

跟踪练习

试题详情

14.(2002年,广东题)如图23(a)所示,A、B为水平放置的平行金属板,板间距离为(远小于板的长度和宽),在两板之间有一带负电的质点P,已知若在A、B间加电压U0,则P点可以静止平衡,现在A、B间加上图(b)所示的随时间变化的电压U,在时,质点P位于A、B的中点处且初速度为零,已知质点P能在A、B间以最大的幅度上下运动,而又不与两极板相碰,求图(b)中U改变的各时刻的表达式(质点开始从中点上升到最高点,及以后每次从最高点到最低点或从最低点到最高点的过程,电压只改变一次)。

 
 
 
 
 
 
   (a)      (b)
        图23

 

试题详情

13.如图22所示为一种获得高能粒子的装置。环形区域内存在垂直纸面向外、大小可调的匀强磁场。质量为m,电量为+q的粒子在环中作半径为R的圆周运动。A、B为两块中心开有小孔的极板。原来电势都是零,每当粒子飞经A板时,A板电势升高为+U,B板电势仍保持为零,粒子在两板间电场中得到加速。每当粒子离开B板时,A板电势又降为零。粒子在电场一次次加速下动能不断增大,而绕行半径不变。

(1)设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈。求粒子绕行n圈回到A板时获得的总动能En

(2)为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增。求粒子绕行第n圈时的磁感应强度Bn

(3)求粒子绕行n圈所需要的总时间tn(设极板间距离远小于R)。

(4)在图22(2)中画出A板电势u与时间t的关系(从t=0起画到粒子第四次离开B板时即可)

           
      R
O    A   +U
0 
 
 
     图22(1)

(5)在粒子绕行的整个过程中,A板电势是否可始终保持为+U?为什么?

u          
 U            
 
 
 
0                                               t
       图22(2)

 

试题详情

12. (2003.江苏)串列加速器是用来产生高能离子的装置。图21中虚线框内为其主体的原理示意图,其中加速管的中部b处有很高的正电势U,a、c两端均有电极接地(电势为零),现将速度很低的负一价碳离子从a端输入,当离子到达b处时,可被设在b处的特殊装置将其电子剥离,成为n价正离子,而不改变其速度大小。这些正n价碳离子从c端飞出后进入一与其速度方向垂直的、磁感应强度为B的匀强磁场中,在磁场中做半径为R的圆周运动。已知碳离子的质量,元电荷,求半径R。

 
 
 
 
 
图21

 

试题详情

11.图20中,A、B是一对平行的金属板。在两板间加上一周期为T的交变电压。A板的电势UA=0,B板的电势UB随时间的变化规律为,在0到T/2的时间内,UB= U0(正常数);在T/2到达T的时间内,UB=-U0;在T到3T/2的时间内,UB=U0;在3T/2到2T的时间,UB= -U0…现有一电子从A板上的小孔进入两板间的电场区内,设电子的初速度和重力影响均可忽略,则(   )

A.若电子在t=0时刻进入,它将一直向B板运动

B.若电子是在t=T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上

C.若电子是在t=3T/8时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上

D.若电子是在t=T/2时刻进入的,它可能时而向B板,时而向A板运动

试题详情

10.如图19所示,x轴上方有匀强磁场, 磁感应强度为B,方向如图所示,下方有匀强电场,场强为E。今有电量为q,质量为m的粒子位于y轴N点坐标(0,-b)。不计粒子所受重力。在x轴上有一点M(L,0)。若使上述粒子在y轴上的N点由静止开始释放在电磁场中往返运动,刚好能通过M点。已知OM=L。求:

(1)   粒子带什么电?

(2)   释放点N离O点的距离须满足什么条件?

 
 
 
 
 
 
图 19

(3)   从N到M点粒子所用最短时间为多少?

 

 
 
 
 
 
     图20

试题详情

9.如图18所示,在x轴上方有匀强磁场(磁感强度为B),一个质量为m,带电量为q的粒子以速度v0从坐标原点O射入磁场,v0 与x轴的负方向夹角为,不计重力,求粒子在磁场中飞行的时间和飞出磁场的坐标(磁场垂直纸面,不考虑粒子的重力)

 

 
图18

试题详情

8.如图17所示,已充电的平行板电容器,带正电的极板接地,两极板间于P点处固定一负的点电荷,若将上极板下移至虚线位置,则下列说法中正确的是(   )

A.两极间的电压和板间场强都变小

B.两极间的电压变小,但场强不变

C.P点的电势升高,点电荷的电势能增大

D.P点的电势不变,点电荷的电势能也不变

试题详情


同步练习册答案