0  318265  318273  318279  318283  318289  318291  318295  318301  318303  318309  318315  318319  318321  318325  318331  318333  318339  318343  318345  318349  318351  318355  318357  318359  318360  318361  318363  318364  318365  318367  318369  318373  318375  318379  318381  318385  318391  318393  318399  318403  318405  318409  318415  318421  318423  318429  318433  318435  318441  318445  318451  318459  447090 

29.   (2009广州)如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

试题详情

28.   (2009湖州)已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点的坐标,则

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

试题详情

27.   (2009泰安)如图,△OAB是边长为2的等边三角形,过点A的直线

(1) 求点E的坐标;

(2) 求过 A、O、E三点的抛物线解析式;

(3)    (2009遂宁)如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.

⑴求二次函数的解析式;

⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;

⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

试题详情

26.   (2009江苏)如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.

(1)求点与点的坐标;

(2)当四边形为菱形时,求函数的关系式.

试题详情

25.   (2009莆田)已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B.

  (1)求抛物线的解析式;

  (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值:

  (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

试题详情

24.   (2009成都)在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO=

   (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;

   (3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

试题详情

23.   (12分)(2009南州)已知二次函数

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。

(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。

(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。

试题详情

22.   (本题满分12分)

  (2009泸州) 如图12,已知二次函数 的图象与x轴的正半轴相交于点A、B,

与y轴相交于点C,且

   (1)求c的值;

   (2)若△ABC的面积为3,求该二次函数的解析式;  

   (3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使△PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

试题详情

21.   (本题满分l2分)

(2009宜宾)如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB.tan∠BA0=,点B的坐标为(7,4).

(1)求点A、C的坐标;

(2)求经过点0、B、C的抛物线的解析式;

(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由.

试题详情

20.   (2009德州)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点EAB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.

(1)当MNAB之间的距离为0.5米时,求此时△EMN的面积;

(2)设MNAB之间的距离为米,试将△EMN的面积S(平方米)表示成关于x的函数; 

(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由. 

试题详情


同步练习册答案