0  318432  318440  318446  318450  318456  318458  318462  318468  318470  318476  318482  318486  318488  318492  318498  318500  318506  318510  318512  318516  318518  318522  318524  318526  318527  318528  318530  318531  318532  318534  318536  318540  318542  318546  318548  318552  318558  318560  318566  318570  318572  318576  318582  318588  318590  318596  318600  318602  318608  318612  318618  318626  447090 

28.数学活动小组接受学校的一项任务:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一块生物园地,请设计一个方案使生物园的面积尽可能大。

(1)活动小组提交如图的方案。设靠墙的一边长为 x 米,则不靠墙的一边长为(60-2x)米,面积y= (60-2x) x米2.当x=15时,y最大值 =450米2

(2)机灵的小明想:如果改变生物园的形状,围成的面积会更大吗?请你帮小明设计两个方案,要求画出图形,算出面积大小;并找出面积最大的方案.

     

试题详情

27.如图,等腰梯形ABCD的边BCx轴上,点Ay轴的正方向上,A( 0, 6 ),D ( 4,6),且AB=2.

(1)求点B的坐标;

(2)求经过ABD三点的抛物线的解析式;

(3)在(2)中所求的抛物线上是否存在一点P,使得S△PBD=S梯形ABCD。若存在,请求出该点坐标,若不存在,请说明理由.

试题详情

26.已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中xl<x2

(1)求m的取值范围;

(2)若x12+ x22=10,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;

试题详情

25.已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.

⑴若该抛物线过点B,且它的顶点P在直线y=-2x+b上,试确定这条抛物线的解析式;

⑵过点B作直线BC⊥AB交x轴于点C,若抛物线的对称轴恰好过C点,试确定直线y=-2x+b的解析式.

试题详情

24.如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,

(1)建立如图所示的直角坐标系,求此抛物线的解析式;

(2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?

试题详情

23.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图像(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).

 根据图像提供的信息,解答下列问题:

 (1)求累积利润s(万元)与时间t(月)之间的函数关系式;

 (2)求截止到几月末公司累积利润可达到30万元;

 (3)求第8个月公司所获利润是多少万元?

试题详情

22.华联商场以每件30元购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)满足一次函数y=162-3x;

(1)写出商场每天的销售利润(元)与每件的销售价(元)的函数关系式;

(2)如果商场要想获得最大利润,每件商品的销售价定为多少为最合适?最大销售利润为多少?

试题详情

21. 已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,

(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。

(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围。

试题详情

20.二次函数y=x2-2x-3与x轴两交点之间的距离为_________.

试题详情

19.抛物线y=(x-1)2+3的顶点坐标是____________.

试题详情


同步练习册答案