3.力的特性(E):只要有电荷存在周围就存在电场 ,电场中某位置场强:
(定义式)(真空点电荷) (匀强电场E、d共线)
2.库仑定律: 条件:真空中、点电荷;静电力常量k=9×109Nm2/C2
三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小”
中间电荷量较小且靠近两边中电量较小的;
常见电场的电场线分布熟记,特别是孤立正、负电荷,等量同种、异种电荷连线上及中垂线上的场强分布,电场线的特点及作用.
1.电荷守恒定律:元电荷
6.电磁感应与电路综合
方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:
(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.
(2)画出等效电路图.
(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.
功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手,
分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。
电磁波
LC振荡电路:产生高频率的交变电流. T=2π
电场能↑→电场线密度↑→电场强度E↑→ 电容器极板间电压u↑→ 电容器带电量q↑
磁场能↑→磁感线密度↑→磁感强度B↑→线圈中电流i↑
(2)电磁振荡的产生过程
放电过程:在放电过程中,q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能逐渐转变成线圈的磁场能。放电结束时,q=0, E电场能=0,i最大,E磁场能最大,电场能完全转化成磁场能。
充电过程:在充电过程中,q↑、u↑、E电场能↑→I↓、B↓、E磁场能↓,线圈的磁场能向电容器的电场能转化。充电结束时,q、E电场能增为最大,i、E磁场能均减小到零,磁场能向电场能转化结束。
反向放电过程: q↓、u↓、E电场能↓→i↑、B↑、E磁场能↑,电容器的电场能转化为线圈的磁场能。放电结束时,q=0, E电场能=0,i最大,E磁场能最大,电场能向磁场能转化结束。
反向充电过程: q↑、u↑、E电场能↑→i↓、B↓、E磁场能↓,线圈的磁场能向电容器的电场能转化。充电结束时,q、E电场能增为最大,i、E磁场能均减小到零,磁场能向电场能转化结束。
麦克斯韦的电磁场理论:
①变化的磁场产生电场:均匀变化的磁场将产生恒定的电场,周期性变化的磁场将产生同频率周期性变化的电场。
②变化的电场产生磁场:均匀变化的电场将产生恒定的磁场,周期性变化的电场将产生同频率周期性变化的磁场。
发射电磁波的条件①频率要有足够高。②振荡电路的电场和磁场必须分散到尽可能大的空间,采用开放电路.
特点:(1)电磁波是横波。(2)三个特征量的关系v=λ/T=λf
(3)电磁波可以在真空中传播,向周围空间传播电磁能,能发生反射,折射,干涉和衍射。
无线电波的发射:LC振荡器电路产生的高频振荡电流通过L2与L1的互感作用,使L1也产生同频率的振荡电流,振荡电流在开放电路中激发出无线电波,向四周发射。
调制要传递的信号附加到高频等幅振荡电流上的过程叫调制。两种方式:调幅和调频
a.调幅使高频振荡的振幅随信号而改变叫做调幅。(AM) 中波和短波的波段
b.调频使高频振荡的频率随信号而改变叫做调频。(FM)和电视广播,微波中的甚高频(VHF)和超高频(UHF)波段。
电波的接收(1)电谐振选台。当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强.这种现象叫做电谐振,相当于机械振动中的共振。
(2)检波由调谐电路接收到的感应电流,是经过调制的高频振荡电流,还不是所需要的信号。还必须从高频振荡电流中“检”出声音或图象信号,从接收到的高频振荡中“检”出所携带的信号,叫做检波。也叫解调。
下图中L2、D、C2和耳机共同组成检波电路。检波之后的信号再经过放大重现我们就可以听到或看到了。
(如上图)
5.电磁感应与动量、能量的综合
方法:(1)从动量角度着手,运用动量定理或动量守恒定律
①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.
②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.
(2)从能量转化和守恒着手,运用动能定律或能量守恒定律
①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.
②能量转化特点:其它能(如:机械能)电能内能(焦耳热)
4.电磁感应与力学综合
方法:从运动和力的关系着手,运用牛顿第二定律
(1)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二列方程求解.
(2)注意安培力的特点:
(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.
3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。
内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
B感和I感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I感的B是阻碍产生I感的原因)
B原方向?;B原?变化(原方向是增还是减);I感方向?才能阻碍变化;再由I感方向确定B感方向。
楞次定律的多种表述
①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。
③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。(增反、减同)
④楞次定律的特例──右手定则
在应用中常见两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。
磁通量的变化与相对运动具有等效性:磁通量增加相当于导体回路与磁场接近,磁通量减少相当于导体回路与磁场远离。因此,
从导体回路和磁场相对运动的角度来看,感应电流的磁场总要阻碍相对运动;
从穿过导体回路的磁通量变化的角度来看,感应电流的磁场总要阻碍磁通量的变化。
能量守恒表述:I感效果总要反抗产生感应电流的原因
电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。
一般可归纳为:
导体组成的闭合电路中磁通量发生变化导体中产生感应电流导体受安培力作用
导体所受合力随之变化导体的加速度变化其速度随之变化感应电流也随之变化
周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动
“阻碍”和“变化”的含义
感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。
磁通量变化 感应电流
感应电流的磁场
发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。
2.[感应电动势的大小计算公式] 1) E=BLV (垂直平动切割)
2) …=?(普适公式) ε∝(法拉第电磁感应定律) 3) E= nBSωsin(ωt+Φ);Em=nBSω (线圈转动切割) 4)E=BL2ω/2 (直导体绕一端转动切割) 5)*自感E自=nΔΦ/Δt==L ( 自感 )
1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。
内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件
a、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。
电磁感应:.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com