0  319565  319573  319579  319583  319589  319591  319595  319601  319603  319609  319615  319619  319621  319625  319631  319633  319639  319643  319645  319649  319651  319655  319657  319659  319660  319661  319663  319664  319665  319667  319669  319673  319675  319679  319681  319685  319691  319693  319699  319703  319705  319709  319715  319721  319723  319729  319733  319735  319741  319745  319751  319759  447090 

3、用外接、限流测出金属丝电阻

试题详情

2、螺旋测微器测出直径(也可用积累法测),并算出横截面积。

试题详情

1、用刻度尺测出金属丝长度

试题详情

7.此实验不用测物体的质量(无须天平)

验证自由下落过程中机械能守恒,图示纸带的左端是用夹子夹重物的一端。

实验七:测定金属的电阻率(同时练习使用螺旋测微器)

[实验目的]:用伏安法间接测定某种金属导体的电阻率;练习使用螺旋测微器。  [实验原理]:根据电阻定律公式R=,只要测量出金属导线的长度和它的直径d,计算出导线的横截面积S,并用伏安法测出金属导线的电阻R,即可计算出金属导线的电阻率。  [实验器材]:被测金属导线,直流电源(4V),电流表(0-0.6A),电压表(0-3V),滑动变阻器(50Ω),电键,导线若干,螺旋测微器,米尺等。    [实验步骤]  1.用螺旋测微器在被测金属导线上的三个不同位置各测一次直径,求出其平均值d,计算出导线的横截面积S。  2.按如图所示的原理电路图连接好用伏安法测电阻的实验电路。  3.用毫米刻度尺测量接入电路中的被测金属导线的有效长度,反复测量3次,求出其平均值。  4.把滑动变阻器的滑动片调节到使接入电路中的电阻值最大的位置,电路经检查确认无误后,闭合电键S。改变滑动变阻器滑动片的位置,读出几组相应的电流表、电压表的示数I和U的值,断开电键S,求出导线电阻R的平均值。  5.将测得的R、、d值,代入电阻率计算公式中,计算出金属导线的电阻率。  6.拆去实验线路,整理好实验器材。  [注意事项]  1.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两接入点间的部分待测导线长度,测量时应将导线拉直。  2.本实验中被测金属导线的电阻值较小,因此实验电路必须采用电流表外接法。  3.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待测金属导线的两端。  4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置。  5.在用伏安法测电阻时,通过待测导线的电流强度I的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中变化。

被测电阻丝的电阻(一般为几欧)较小,所以选用电流表

外接法;可确定电源电压、电流表、电压表量程均不宜太大。

本实验不要求电压调节范围,可选用限流电路。

因此选用下面左图的电路。开始时滑动变阻器的滑动触头应该在右端。

本实验通过的电流不宜太大,通电时间不能太长,以免电阻丝发热后电阻率发生明显变化

实验步骤:

试题详情

6.由于有阻力,所以稍小于

试题详情

5.测量下落高度必须从起点开始算 

试题详情

2.在平衡摩擦力时,不要悬挂小桶,但小车应连着纸带且接通电源。用手轻轻地给小车一个初速度,如果在纸带上打出的点的间隔是均匀的,表明小车受到的阻力跟它的重力沿斜面向下的分力平衡。  3.作图时应该使所作的直线通过尽可能多的点,不在直线上的点也要尽可能对称地分布在直线的两侧,但如遇个别特别偏离的点可舍去。

加速度和力的关系 加速度和质量的关系

两个相同的小车并排放在光滑水平桌面上,小车前端系上细线,线的另一端跨过定滑轮各挂一个小盘,盘里分别放有不同质量的砝码。小车所受的水平拉力F的大小可以认为等于砝码(包括砝码盘)的重力大小。小车后端也系有细线,用一只夹子夹住两根细线,控制两辆小车同时开始运动和结束运动。

由于两个小车初速度都是零,运动时间又相同, s=1at2a,只要测出两小车位移s之比就等于它们的加速度a之比。

实验结果是:当小车质量相同时,aF,当拉力F相等时,a∝1/m

实验中用砝码(包括砝码盘)的重力G的大小作为小车所受拉力F的大小,这样做会引起什么样的系统误差?怎样减小这个系统误差?

实验五:探究动能定理

实验六:验证机械能守恒定律

[实验目的] 验证机械能守恒定律。  [实验原理]  当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒。若某一时刻物体下落的瞬时速度为v,下落高度为h,则应有:mgh= ,借助打点计时器,测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能是否守恒,实验装置如图所示。  测定第n点的瞬时速度的方法是:测出第n点的相邻前、后两段相等时间T内下落的距离sn和sn+1,由公式        算出,如图所示。       

[实验器材]  铁架台(带铁夹),打点计时器,学生电源,导线,带铁夹的重缍,纸带,米尺。  [实验步骤]  1.按如图装置把打点计时器安装在铁架台上,用导线把打点计时器与学生电源连接好。  2.把纸带的一端在重锤上用夹子固定好,另一端穿过计时器限位孔,用手竖直提起纸带使重锤停靠在打点计时器附近。  3.接通电源,松开纸带,让重锤自由下落。  4.重复几次,得到3-5条打好点的纸带。  5.在打好点的纸带中挑选第一、二两点间的距离接近2mm,且点迹清晰一条纸带,在起始点标上0,以后各依次标上1,2,3……,用刻度尺测出对应下落高度h1、h2、h3……。  6.应用公式计算各点对应的即时速度v1、v2、v3……。  7.计算各点对应的势能减少量mghn和动能的增加量,进行比较。

实验验证步骤:⑴要多做几次实验,选点迹清楚,且第一、二两点间距离接近2mm的纸带进行测量。

⑵用刻度尺量出从0点到1、2、3、4、5各点的距离h1h2h3h4h5

利用“匀变速直线运动中间时刻的即时速度等于该段位移内的平均速度”,

算出2、3、4各点对应的即时速度v2v3v4,验证与2、3、4各点对应的重力势能减少量mgh和动能增加量是否相等。

⑶由于摩擦和空气阻力的影响,本实验的系统误差总是使

⑷本实验不需要在打下的点中取计数点。也不需要测重物的质量。

 

 [注意项事]  1.打点计时器安装时,必须使两纸带限位孔在同一竖直线上,以减小摩擦阻力。  2.保证打出的第一个点是清晰的点,选用纸带时应尽量挑第一、二点间距接近2mm的纸带。  3.因不需要知道动能和势能的具体数值,所以不需要测量重物的质量。   4.先通电源,侍打点计时器正掌工作后才放纸带

试题详情

3.结点的位置和线方向要准确

实验四:验证牛顿运动定律

[实验目的] 验证牛顿第二定律。  [实验原理]     1.如图所示装置,保持小车质量不变,改变小桶内砂的质量,从而改变细线对小车的牵引力,测出小车的对应加速度,作出加速度和力的关系图线,验证加速度是否与外力成正比。 2.保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量,测出小车的对应加速度,作出加速度和质量倒数的关系图线,验证加速度是否与质量成反比。 [实验器材]  小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫木,打点计时器,低压交流电源,导线两根,纸带,托盘天平及砝码,米尺等。 [实验步骤]  1.用天平测出小车和小桶的质量M和M',把数据记录下来。  2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。  3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫木,反复移动垫木的位置,直至小车在斜面上可以保持匀速直线运动状态(也可以从纸带上打的点是否均匀来判断)。  4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量m和m'记录下来。把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。  5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。  6.算出每条纸带对应的加速度的值。  7.用纵坐标表示加速度a,横坐标表示作用力,即砂和桶的总重力(M'+m')g,根据实验结果在坐标平面上描出相应的点,作图线。若图线为一条过原点的直线,就证明了研究对象质量不变时其加速度与它所受作用力成正比。  8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数,在坐标平面上根据实验结果描出相应的点,并作图线,若图线为一条过原点的直线,就证明了研究对象所受作用力不变时其加速度与它的质量成反比。  [注意事项]  1.砂和小桶的总质量不要超过小车和砝码的总质量的

试题详情

2.同一次实验中,橡皮条拉长后的结点位置O必须保持不变。

试题详情

3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个(即每隔5个时间间隔取一个计数点),是为求加速度时便于计算。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。所取的计数点要能保证至少有两位有效数字

实验二:探究弹力和弹簧伸长的关系

利用右图装置,改变钩码个数,测出弹簧总长度和所受拉力(钩码总重量)的多组对应值,填入表中。算出对应的弹簧的伸长量。在坐标系中描点,根据点的分布作出弹力F随伸长量x而变的图象,从而发确定F-x间的函数关系。解释函数表达式中常数的物理意义及其单位。

该实验要注意区分弹簧总长度和弹簧伸长量。对探索性实验,要根据描出的点的走向,尝试判定函数关系。(这一点和验证性实验不同。)

实验三:验证力的平行四边形定则

[实验目的]  实验研究合力与分力之间的关系,从而验证力的合成的平行四边形定则。

 [实验原理]  此实验是要用互成角度的两个力与一个力产生相同的效果(即:使橡皮条在某一方向伸长一定的长度),看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的平行四边形定则。  [实验器材]    方木板一块,白纸,图钉若干,橡皮条,细绳套,弹簧秤(2个),三角板,刻度尺,量角器,细线等。  [实验步骤]  1.用图钉把一张白纸钉在水平桌面上的方木板上。  2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。  3.用两个弹簧秤分别钩住两个细绳套,互成一定角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O(如图所示)。  4.用铅笔描下结点O的位置和两个细绳套的方向,并记录弹簧秤的读数。在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板,根椐平行四边形定则用画图法求出合力F。  5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,记下弹簧秤的读数和细绳的方向。按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。  6.比较F'与用平行四边形定则求得的合力F,在实验误差允许的范围内是否相等。  7.改变两个分力F1和F2的大小和夹角。再重复实验两次,比较每次的F与F'是否在实验误差允许的范围内相等。  [注意事项]  1.用弹簧秤测拉力时,应使拉力沿弹簧秤的轴线方向,橡皮条、弹簧秤和细绳套应位于与纸面平行的同一平面内。使用的弹簧秤是否良好(是否在零刻度),拉动时尽可能不与其它部分接触产生摩擦,拉力方向应与轴线方向相同。

试题详情


同步练习册答案