22、(2009安徽卷理)(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是.同样也假定D受A、B和C感染的概率都是.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).
本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。体现数学的科学价值。本小题满分12分。
解 随机变量X的分布列是
X |
1 |
2 |
3 |
P |
|
|
|
X的均值为
附:X的分布列的一种求法
共有如下6种不同的可能情形,每种情形发生的概率都是:
① |
② |
③ |
④ |
⑤ |
⑥ |
A-B-C-D |
A-B-C └D |
A-B-C └D |
A-B-D └C |
A-C-D └B |
|
在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人。
21、(2009山东卷理)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3
分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第
三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A
处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列
为
|
0
|
2
|
3 |
4 |
5 |
p
|
0.03
|
P1
|
P2 |
P3
|
P4
|
(1)求q的值;
(2)求随机变量的数学期望E;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
解 (1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.
根据分布列知: =0时=0.03,所以
,q=0.8.
(2)当=2时, P1=
=0.75 q( )×2=1.5 q( )=0.24
当=3时, P2 ==0.01,
当=4时, P3==0.48,
当=5时, P4=
=0.24
所以随机变量的分布列为
|
0
|
2
|
3 |
4 |
5 |
p
|
0.03
|
0.24
|
0.01 |
0.48
|
0.24
|
随机变量的数学期望
(3)该同学选择都在B处投篮得分超过3分的概率为
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.
20、(2009北京卷理)(本小题共13分)
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.
解 (Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为.
(Ⅱ)由题意,可得可能取的值为0,2,4,6,8(单位:min).
事件“”等价于事件“该学生在路上遇到次红灯”(0,1,2,3,4),
∴,
∴即的分布列是
|
0 |
2 |
4 |
6 |
8 |
|
|
|
|
|
|
∴的期望是.
19、(2009北京卷文)(本小题共13分)
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2 min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
解(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为.
(Ⅱ)设这名学生在上学路上因遇到红灯停留的总时间至多是4min为事件B,这名学
生在上学路上遇到次红灯的事件.
则由题意,得,
.
由于事件B等价于“这名学生在上学路上至多遇到两次红灯”,
∴事件B的概率为.
18、(2009浙江卷理)(本题满分14分)在这个自然数中,任取个数.
(I)求这个数中恰有个是偶数的概率;
(II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.
解(I)记“这3个数恰有一个是偶数”为事件A,则;
(II)随机变量的取值为的分布列为
|
0 |
1 |
2 |
P |
|
|
|
所以的数学期望为
17.(2009重庆卷文)从一堆苹果中任取5只,称得它们的质量如下(单位:克)125 124 121 123 127则该样本标准差 (克)(用数字作答).
[解析]因为样本平均数,则样本方差所以
答案 2
16.(2009福建卷文)点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为 。
[解析]如图可设,则,根据几何概率可知其整体事件是其周长,则其概率是。
答案
0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。
[解析]三人均达标为0.8×0.6×0.5=0.24,三人中至少有一人达标为1-0.24=0.76
答案 0.24 0.76
15.(2009湖北卷文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、
14.(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生 |
1号 |
2号 |
3号 |
4号 |
5号 |
甲班 |
6 |
7 |
7 |
8 |
7 |
乙班 |
6 |
7 |
6 |
7 |
9 |
则以上两组数据的方差中较小的一个为= .
[解析] 考查统计中的平均值与方差的运算。
甲班的方差较小,数据的平均值为7,
故方差
答案
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com