1.( 上海市部分重点中学高三第一次联考) 等差数列的前n项和当首项和公差d变化时,若是一个定值,则下列各数中为定值的是―――――――――( )
A、 B.S C、 D、
答案 B
3.(2009上海八校联考)已知点列顺次为直线上的点,点列顺次为轴上的点,其中,对任意的,点、、构成以为顶点的等腰三角形。
(1)证明:数列是等差数列;
(2)求证:对任意的,是常数,并求数列的通项公式;
(3)对上述等腰三角形添加适当条件,提出一个问题,并做出解答。
(根据所提问题及解答的完整程度,分档次给分)
解: (1)依题意有,于是.
所以数列是等差数列. .4分
(2)由题意得,即 , () ①
所以又有. ②
由②①得:, 所以是常数. 6分
由都是等差数列.
,那么得 ,
. ( 8分
故 10分
(3) 提出问题①:若等腰三角形中,是否有直角三角形,若有,求出实数
提出问题②:若等腰三角形中,是否有正三角形,若有,求出实数
解:问题① 11分
当为奇数时,,所以
当为偶数时,所以
作轴,垂足为则,要使等腰三角形为直角三角形,必须且只须:. 13分
当为奇数时,有,即 ①
, 当, 不合题意.15分
当为偶数时,有 ,,同理可求得
当时,不合题意. 17分
综上所述,使等腰三角形中,有直角三角形,的值为或或. 18分
解:问题② 11分
当为奇数时,,所以
当为偶数时,所以
作轴,垂足为则,要使等腰三角形为正三角形,必须且只须:. 13分
当为奇数时,有,即 ①
, 当时,. 不合题意. 15分
当为偶数时,有 ,,同理可求得 .
;;当时,不合题意.17分
综上所述,使等腰三角形中,有正三角形,的值为
;; ;18分
2007--2008年联考题
即-<λ<1,又λ≠0,λ为整数,
∴λ=-1,使得对任意n∈N*,都有. 12分
2.(2009上海青浦区)设数列的前和为,已知,,,,
一般地,().
(1)求;
(2)求;
(3)求和:.
(1); ……3分
(2)当时,()
, ……6分
所以,(). ……8分
(3)与(2)同理可求得:, ……10分
设=,
则,(用等比数列前n项和公式的推导方法),相减得
,所以
. ……14分
1.(2009滨州一模)已知曲线过上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中.
(I)求与的关系式;
(II)令,求证:数列是等比数列;
(III)若(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立。
(1) 解:过的直线方程为
联立方程消去得
∴
即
(2)
∴是等比数列
,;
(III)由(II)知,,要使恒成立由=>0恒成立,
即(-1)nλ>-()n-1恒成立.
ⅰ。当n为奇数时,即λ<()n-1恒成立.
又()n-1的最小值为1.∴λ<1. 10分
ⅱ。当n为偶数时,即λ>-()n-1恒成立,
2.((2009上海八校联考)在数列中,,且,_________。
答案 2550
1.(2009上海十四校联考)若数列为“等方比数列”。则“数列是等方比数列”是“数列是等方比数列”的 条件
3.(2009聊城一模)两个正数a、b的等差中项是5,等比例中项是4,若a>b,则双曲线的离心率e等于 ( )
A. B. C. D.
答案B
2.(2009上海十四校联考)无穷等比数列…各项的和等于 ( )
A. B. C. D.
答案B
1.(2009滨州一模)等差数列中,,,则的值为
A.15 B.23 C.25 D.37
答案 B
14.(2009常德期末)已知数列的前n项和为且,数列满足且.
(1)求的通项公式;
(2)求证:数列为等比数列;
(3)求前n项和的最小值.
解: (1)由得, ……2分
∴ ……………………………………4分
(2)∵,∴,
∴;
∴由上面两式得,又
∴数列是以-30为首项,为公比的等比数列.…………………8分
(3)由(2)得,∴
= ,∴是递增数列 ………11分
当n=1时, <0;当n=2时, <0;当n=3时, <0;当n=4时, >0,所以,从第4项起的各项均大于0,故前3项之和最小.
且…………………………13分
9月份更新
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com