8.(2007浙江)若函数,(其中,)的最小正周期是,且,则( )
A. B.
C. D.
答案 D
7.(2007海南、宁夏)函数在区间的简图是( )
答案 A
6.(2007广东)若函数,则是( )
A.最小正周期为的奇函数 B.最小正周期为的奇函数
C.最小正周期为的偶函数 D.最小正周期为的偶函数
答案D
5.(2007福建)已知函数的最小正周期为,则该函数的图象( )
A.关于点对称 B.关于直线对称
C.关于点对称 D.关于直线对称
答案 A
4.(2008海南、宁夏文科卷)函数的最小值和最大值分别为( )
A. -3,1 B. -2,2 C. -3, D. -2,
解析 ∵
∴当时,,当时,;故选C;
答案:C
3、(2008广东)已知函数,则是( )
A、最小正周期为的奇函数 B、最小正周期为的奇函数
C、最小正周期为的偶函数 D、最小正周期为的偶函数
解析
答案:D
2.(海南、宁夏理科卷)已知函数)在区间的图像如下:那么=( )
A.1 B.2 C. D.
答案:B
解析 由图象知函数的周期,所以
1.(2008山东)函数的图象是 ( )
答案:A
解析 本题考查复合函数的图象。
是偶函数,可排除B,D; 由排除C,选A
43.(2009上海卷文)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .
已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量,
, .
(1) 若//,求证:ΔABC为等腰三角形;
(2) 若⊥,边长c = 2,角C = ,求ΔABC的面积 .
证明:(1)
即,其中R是三角形ABC外接圆半径,
为等腰三角形
解(2)由题意可知
由余弦定理可知,
w
2005--2008年高考题
42.(2009重庆卷理)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)
设函数.
(Ⅰ)求的最小正周期.
(Ⅱ)若函数与的图像关于直线对称,求当时的最大值.
解:(Ⅰ)=
=
=
故的最小正周期为T = =8
(Ⅱ)解法一:
在的图象上任取一点,它关于的对称点 .
由题设条件,点在的图象上,从而
=
=
当时,,因此在区间上的最大值为
解法二:
因区间关于x = 1的对称区间为,且与的图象关于
x = 1对称,故在上的最大值为在上的最大值
由(Ⅰ)知=
当时,
因此在上的最大值为
. 42.(2009重庆卷文)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)
设函数的最小正周期为.
(Ⅰ)求的最小正周期.
(Ⅱ)若函数的图像是由的图像向右平移个单位长度得到,求的单调增区间.
解:(Ⅰ)
依题意得,故的最小正周期为.
(Ⅱ)依题意得:
由
解得\
故的单调增区间为:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com