所以。解之得,,所以
〖答案〗设(,为待定系数),则,即。
1.设,且,。则的取值范围为_______.
〖解析〗本题考查不等式的基本性质,首先建立待求范围的整体与已知范围的整体的等量关系,再利用“一次性”不等关系的运算求得待求整体的范围。
此为显然,取等号当且仅当,故命题得证.
(一)本章是对必修5中不等式的补充和深化,从新课标高考看,考点主要有两部分:一是绝对值不等式;二是不等式的证明与应用(求最值),但要注意不等式的证明与数学归纳法的结合。但是近年来高考对不等式的证明难度要求有所降低,出现题目较少,因此应将绝对值不等式的解法和证明放在重点位置。本部分作为四选二的内容之一,必有一道选做的解答题,题目多为中低档题。
(二)考点预测题
只要证,即,也即,
,
此时条件式成为,则,且有,于是
由于 ,取等号当且仅当,
〖证明〗为使所证式有意义,三数中至多有一个为;根据对称性,不妨设,则,对正数作调整,
证明:.
〖解析〗证明不等式的思路主要有三:(1)比较法;(2)分析法;(3)综合法。本题可以使用综合法,结合基本不等式从左向右证明。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com