例15 不等式的解集为(4,b),则a= ,b= 。
解:由函数的图象过点(1,2)得: 即函数过点 则其反函数过点所以函数的图象一定过点
则函数的图象一定过点 .
例14(08湖南理)设函数存在反函数,且函数的图象过点(1,2),
解:可看作是过点P(x,y)与M(1,0)的直线的斜率,其中点P的圆上,如图,当直线处于图中切线位置时,斜率最大,最大值为。
(五)等价转化法
通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
例13 已知实数x、y满足,则的最大值是 。
解:根据不等式解集的几何意义,作函数和函数的图象(如图),从图上容易得出实数a的取值范围是。
例12 如果不等式的解集为A,且,那么实数a的取值范围是 。
解: 设P(x,y),则当∠F1PF2=90°时,点P的轨迹方程为x2+y2=5,由此可得点P的横坐标x=±,又当点P在x轴上时,∠F1PF2=0;点P在y轴上时,∠F1PF2为钝角,由此可得点P横坐标的取值范围是-<x<。
(四)数形结合法
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
例11椭圆+=1的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是 。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com