9.(2006年安徽卷)函数对于任意实数满足条件,若 则_______________。
答案 -
解析 。
8.(2007年上海)函数的定义域是 .
答案
7.(2007上海春季5)设函数是奇函数. 若
则 .
答案
6.(2005年上海13)若函数,则该函数在上是 ( )
A.单调递减;无最小值 B.单调递减;有最小值
C.单调递增;无最大值 D.单调递增;有最大值
答案 A
5.(07安徽)图中的图象所表示的函数的解析式为 ( )
A. (0≤x≤2)
B. (0≤x≤2)
C. (0≤x≤2)
D. (0≤x≤2)
答案 B
4.(07重庆)已知定义域为R的函数在区间上为减函数,且函数为偶函数,则 ( )
A. B.
C. D.
答案 D
3. (07福建)已知函数为R上的减函数,则满足的实数的取值范围
是 ( )
A. B.
C. D.
答案 C
2.(07天津)在上定义的函数是偶函数,且,若在区间 是减函数,则函数 ( )
A.在区间上是增函数,区间上是增函数
B.在区间上是增函数,区间上是减函数
C.在区间上是减函数,区间上是增函数
D.在区间上是减函数,区间上是减函数
答案 B
1.(2008年山东文科卷)设函数则的值为( )
A. B. C. D.
答案 A
50.(2009年上海卷理)已知函数的反函数。定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”。
(1) 判断函数是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数对任何,满足“积性质”。求的表达式。
解 (1)函数的反函数是
而其反函数为
故函数不满足“1和性质”
(2)设函数满足“2和性质”,
…….6分
而得反函数………….8分
由“2和性质”定义可知=对恒成立
即所求一次函数为………..10分
(3)设,,且点在图像上,则在函数图象上,
故,可得, ......12分
令,则。,即。 ......14分
综上所述,,此时,其反函数就是,
而,故与互为反函数 。
2005-2008年高考题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com